An electric field‐assisted in situ dispersion of multiwall carbon nanotubes (MWCNTs) in polymer nanocomposites, fabricated through stereolithography three‐dimensional (3D) printing technique, was demonstrated. The introduction of MWCNTs increased the elasticity modulus of the polymer resin by 77%. Furthermore, the use of an electric field for in situ MWCNT dispersion helped improving the average elongation at break of the samples with MWCNTs by 32%. The electric field also increased the ultimate tensile strength of the MWCNT reinforced nanocomposites by 42%. An increase of over 20% in the ultimate tensile strength of in situ dispersed MWCNT nanocomposites over the pure polymer material was observed. Finally, it was demonstrated that the magnitude and direction of the electrical conductivity of MWCNT nanocomposites can be engineered through the application of in situ electric fields during 3D printing. An increase of 50% in the electrical conductivity was observed when MWCNTs were introduced, while the application of the electric field further improved the electrical conductivity by 26%. The presented results demonstrated the feasibility of tuning both electrical and mechanical properties of MWCNT reinforced polymer nanocomposites using in situ electrical field‐assisted 3D printing. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 47600.
This paper presents the fabrication, modeling, and testing of a metamaterial based passive wireless temperature sensor consisting of an array of closed ring resonators (CRRs) embedded in a dielectric material matrix. A mixture of 70 vol% Boron Nitride (BN) and 30 vol% Barium Titanate (BTO) is used as the dielectric matrix and copper washers are used as CRRs. Conventional powder compression is used for the sensor fabrication. The feasibility of wireless temperature sensing is demonstrated up to 200 C. The resonance frequency of the sensor decreases from 11.93 GHz at room temperature to 11.85 GHz at 200 C, providing a sensitivity of 0.462 MHz C. The repeatability of temperature sensing tests is carried out to quantify the repeatability. The highest standard deviation observed is 0.012 GHz at 200 C.
The orthotropic functional properties of additively manufactured ceramics due to the fabrication process was characterized in this study. Spherical, environmentally benign barium titanate (BaTiO 3 ) powders were fabricated using binder jetting 3D printing. Dielectric and piezoelectric properties of these ceramics were characterized as a function of the printing orientation. The dielectric constant of the samples tested normal to the printing layers was observed to be 20% higher than those tested in the parallel fashion. Similarly, the piezoelectric response was found to be over 35% in the normal orientation. With these results, it was shown that the electroding orientation has a direct influence on the functional properties of additively manufactured ceramics. Overall, with less than 37% of the theoretical density, the average piezoelectric coefficient for the perpendicularly tested ceramics was found to be 152.7 pC N −1 , which is 80% of the theoretical value. The high piezoelectric response obtained with such low densities can lead to the development of more mass efficient, and cost-effective sensing and energy harvesting devices, as well as structures that can be tuned to respond based on the direction of the loads applied.
Recent studies have highlighted the effects of various stimuli on the chemical reduction of graphene oxide (GO) through green reductant L-ascorbic acid (L-AA); however, the combination of near ultraviolet (NUV) light to increase the reduction rate has yet to be thoroughly explored. In this study, drop-casted GO films were subjected to chemical reduction through L-AA with various levels of exposure under 405 nm NUV radiation. The structure and uniformity of GO stackings that form the film were characterized through scanning electron microscopy (SEM) and wide-angle x-ray scattering (WAXS). Additionally, WAXS was used to track the removal of oxygencontaining functional groups along with Fourier-transform infrared (FT-IR) spectroscopy and x-ray photoelectron spectroscopy (XPS) as a function of L-AA and NUV light exposure times. XPS results demonstrated that the interaction between L-AA and NUV exposure has a significant effect on the reduction of films. Furthermore, the results that yielded the highest reduction (C-C bond concentration of 60.7%) were the longest L-AA and NUV light exposure times (48 hours and 3 hours, respectively). This report provides a study on the effects of NUV on the green reduction of GO films through L-AA with potential application in solar energy and chemical sensing applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.