Abstract-Real-time tool segmentation from endoscopic videos is an essential part of many computer-assisted robotic surgical systems and of critical importance in robotic surgical data science. We propose two novel deep learning architectures for automatic segmentation of non-rigid surgical instruments. Both methods take advantage of automated deep-learningbased multi-scale feature extraction while trying to maintain an accurate segmentation quality at all resolutions. The two proposed methods encode the multi-scale constraint inside the network architecture. The first proposed architecture enforces it by cascaded aggregation of predictions and the second proposed network does it by means of a holistically-nested architecture where the loss at each scale is taken into account for the optimization process. As the proposed methods are for realtime semantic labeling, both present a reduced number of parameters. We propose the use of parametric rectified linear units for semantic labeling in these small architectures to increase the regularization of the network while maintaining the segmentation accuracy. We compare the proposed architectures against state-of-the-art fully convolutional networks. We validate our methods using existing benchmark datasets, including ex vivo cases with phantom tissue and different robotic surgical instruments present in the scene. Our results show a statistically significant improved Dice Similarity Coefficient over previous instrument segmentation methods. We analyze our design choices and discuss the key drivers for improving accuracy.
The Dice score is widely used for binary segmentation due to its robustness to class imbalance. Soft generalisations of the Dice score allow it to be used as a loss function for training convolutional neural networks (CNN). Although CNNs trained using mean-class Dice score achieve state-of-the-art results on multi-class segmentation, this loss function does neither take advantage of inter-class relationships nor multi-scale information. We argue that an improved loss function should balance misclassifications to favour predictions that are semantically meaningful. This paper investigates these issues in the context of multi-class brain tumour segmentation. Our contribution is threefold. 1) We propose a semantically-informed generalisation of the Dice score for multi-class segmentation based on the Wasserstein distance on the probabilistic label space. 2) We propose a holistic CNN that embeds spatial information at multiple scales with deep supervision. 3) We show that the joint use of holistic CNNs and generalised Wasserstein Dice score achieves segmentations that are more semantically meaningful for brain tumour segmentation.
Abstract. Real-time tool segmentation is an essential component in computer-assisted surgical systems. We propose a novel real-time automatic method based on Fully Convolutional Networks (FCN) and optical flow tracking. Our method exploits the ability of deep neural networks to produce accurate segmentations of highly deformable parts along with the high speed of optical flow. Furthermore, the pre-trained FCN can be fine-tuned on a small amount of medical images without the need to hand-craft features. We validated our method using existing and new benchmark datasets, covering both ex vivo and in vivo real clinical cases where different surgical instruments are employed. Two versions of the method are presented, non-real-time and real-time. The former, using only deep learning, achieves a balanced accuracy of 89.6% on a real clinical dataset, outperforming the (non-real-time) state of the art by 3.8 percentage points. The latter, a combination of deep learning with optical flow tracking, yields an average balanced accuracy of 78.2% across all the validated datasets.
Abstract. Brain tumour segmentation plays a key role in computerassisted surgery. Deep neural networks have increased the accuracy of automatic segmentation significantly, however these models tend to generalise poorly to different imaging modalities than those for which they have been designed, thereby limiting their applications. For example, a network architecture initially designed for brain parcellation of monomodal T1 MRI can not be easily translated into an efficient tumour segmentation network that jointly utilises T1, T1c, Flair and T2 MRI. To tackle this, we propose a novel scalable multimodal deep learning architecture using new nested structures that explicitly leverage deep features within or across modalities. This aims at making the early layers of the architecture structured and sparse so that the final architecture becomes scalable to the number of modalities. We evaluate the scalable architecture for brain tumour segmentation and give evidence of its regularisation effect compared to the conventional concatenation approach.
Purpose Early squamous cell neoplasia (ESCN) in the oesophagus is a highly treatable condition. Lesions confined to the mucosal layer can be curatively treated endoscopically. We build a computer-assisted detection system that can classify still images or video frames as normal or abnormal with high diagnostic accuracy. Methods We present a new benchmark dataset containing 68K binary labelled frames extracted from 114 patient videos whose imaged areas have been resected and correlated to histopathology. Our novel convolutional network architecture solves the binary classification task and explains what features of the input domain drive the decision-making process of the network. Results The proposed method achieved an average accuracy of 91.7% compared to the 94.7% achieved by a group of 12 senior clinicians. Our novel network architecture produces deeply supervised activation heatmaps that suggest the network is looking at intrapapillary capillary loop patterns when predicting abnormality. Conclusion We believe that this dataset and baseline method may serve as a reference for future benchmarks on both video frame classification and explainability in the context of ESCN detection. A future work path of high clinical relevance is the extension of the classification to ESCN types.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.