BRT (Bus Rapid Transport) vehicles are a frequented microenvironment, it consists of exclusive lines for the transport of passengers in articulated buses. In many large cities of developing countries BRT vehicles are diesel operated buses emitting important amounts of PM2.5, a pollutant related with many health affectations. Evidence of high exposure levels have been reported onboard BRT vehicles, but detailed analysis of self-pollutions has not been developed. In this research, measurements of PM2.5 inside the BRT system of Bogota called TransMilenio were performed. Speed and location data were recorded in real-time. In-situ measurements were performed in 3 lines of the system: Av. El Dorado, Av. Caracas and Calle 80, in different seat locations inside the buses. PM2.5 concentrations above 120 µg/m3 were measured for all the cases studied. Values above the 24 h WHO (World Health Organization) recommendation were registered. Trips were determined to be between 20 to 40 minutes per passenger. A CFD (Computational Fluid Dynamics) model was implemented to simulate the exhaust emissions from the buses, 3 traffic velocities of BRT were evaluated: 20, 32 and 60 km/h. Measurements and simulation results were used to calculate the self-pollution ratios inside the vehicles. The rear of the buses was identified as the most polluted section onboard with a ratio of self-pollution about 35% average.
Objective
To compare estimates of spatiotemporal variations of surface PM2.5 concentrations in Colombia from 2014 to 2019 derived from two global air quality models, as well as to quantify the avoidable deaths attributable to the long-term exposure to concentrations above the current and projected Colombian standard for PM2.5 annual mean at municipality level.
Methods
We retrieved PM2.5 concentrations at the surface level from the ACAG and CAMSRA global air quality models for all 1,122 municipalities, and compare 28 of them with available concentrations from monitor stations. Annual mortality data 2014–2019 by municipality of residence and pooled effect measures for total, natural and specific causes of mortality were used to calculate the number of annual avoidable deaths and years of potential life lost (YPLL) related to the excess of PM2.5 concentration over the current mean annual national standard of 25 µg/m3 and projected standard of 15 µg/m3.
Results
Compared to surface data from 28 municipalities with monitoring stations in 2019, ACAG and CAMSRA models under or overestimated annual mean PM2.5 concentrations. Estimations from ACAG model had a mean bias 1,7 µg/m3 compared to a mean bias of 4,7 µg/m3 from CAMSRA model. Using ACAG model, estimations of total nationally attributable deaths to PM2.5 exposure over 25 and 15 µg/m3 were 142 and 34,341, respectively. Cardiopulmonary diseases accounted for most of the attributable deaths due to PM2.5 excess of exposure (38%). Estimates of YPLL due to all-cause mortality for exceeding the national standard of 25 µg/m3 were 2,381 years.
Conclusion
Comparison of two global air quality models for estimating surface PM2.5 concentrations during 2014–2019 at municipality scale in Colombia showed important differences. Avoidable deaths estimations represent the total number of deaths that could be avoided if the current and projected national standard for PM2.5 annual mean have been met, and show the health-benefit of the implementation of more restrictive air quality standards.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.