Marine obligate actinobacteria produce a wide variety of secondary metabolites with biological activity, notably those with antibiotic activity urgently needed against multi-drug-resistant bacteria. Seventy-five marine actinobacteria were isolated from a marine sediment sample collected in Punta Arena de La Ventana, Baja California Sur, Mexico. The 16S rRNA gene identification, Multi Locus Sequence Analysis, and the marine salt requirement for growth assigned seventy-one isolates as members of the genus Salinispora, grouped apart but related to the main Salinispora arenicola species clade. The ability of salinisporae to inhibit bacterial growth of Staphylococcus epidermidis, Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacer baumannii, Pseudomonas aeruginosa, and Enterobacter spp. was evaluated by cross-streaking plate and supernatant inhibition tests. Ten supernatants inhibited the growth of eight strains of S. epidermidis from patients suffering from ocular infections, two out of the eight showed growth inhibition on ten S. epidermidis strains from prosthetic joint infections. Also, it inhibited the growth of the remaining six multi-drug-resistant bacteria tested. These results showed that some Salinispora strains could produce antibacterial compounds to combat bacteria of clinical importance and prove that studying different geographical sites uncovers untapped microorganisms with metabolic potential.
Three actinomycete strains, designated BL1, BL4, and CV4, were isolated from sediment samples from the Gulf of California in 2009 together with nearly 300 other actinobacteria. Genome mining and analysis of their ∼6.4-Mb sequences confirmed the bioprospecting potential of these three bacteria belonging to the genus Micromonospora.
Plantactinospora sp. strains BB1 and BC1 were isolated in 2009 from sediment samples of the Gulf of California from among almost 300 actinobacteria. Genome mining of their ∼8.5-Mb sequences showed the bioprospecting potential of these rare actinomycetes, providing an insight to their ecological and biotechnological importance.
Actinobacteria isolated from less studied sites on our planet represent a huge opportunity for the discovery of novel microorganisms that may produce unique compounds with biological activity. The class actinobacteria encompasses 80% of the microbes that produce the antibacterial compounds used in medicine today. However, the resistance acquired/showed by pathogenic microorganisms opens the opportunity to explore Mexican ecosystems as a source of novel actinobacteria. Air samples have shown to be an excellent site of study, marine ecosystems which include sediments and marine organisms are important sources of novel actinobacteria and soil samples are still a promising source to isolate this microbial group. The isolation of novel actinobacteria is a dynamic strategy that depends on the expertise, patience, and talent of the techniques applied and needs to be fully explored to untap the unknown actinobacterial diversity with potential in biology.
Streptomyces sp. strain V2 was isolated from potato scab lesions in the state of Sinaloa, Mexico, and appears to be responsible for outbreaks in the area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.