There are considerable challenges in directly targeting the mutant p53 protein, given the large heterogeneity of p53 mutations in the clinic. An alternative approach is to exploit the altered fitness of cells imposed by loss-of-wild-type p53. Here we identify niclosamide through a HTS screen for compounds selectively killing p53-deficient cells. Niclosamide impairs the growth of p53-deficient cells and of p53 mutant patient-derived ovarian xenografts. Metabolome profiling reveals that niclosamide induces mitochondrial uncoupling, which renders mutant p53 cells susceptible to mitochondrial-dependent apoptosis through preferential accumulation of arachidonic acid (AA), and represents a first-in-class inhibitor of p53 mutant tumors. Wild-type p53 evades the cytotoxicity by promoting the transcriptional induction of two key lipid oxygenation genes, ALOX5 and ALOX12B, which catalyzes the dioxygenation and breakdown of AA. Therefore, we propose a new paradigm for targeting cancers defective in the p53 pathway, by exploiting their vulnerability to niclosamide-induced mitochondrial uncoupling.
Despite its prominence, the mechanisms through which the tumor suppressor p53 regulates most genes remain unclear. Recently, the regulatory factor X 7 (RFX7) emerged as a suppressor of lymphoid neoplasms, but its regulation and target genes mediating tumor suppression remain unknown. Here, we identify a novel p53-RFX7 signaling axis. Integrative analysis of the RFX7 DNA binding landscape and the RFX7-regulated transcriptome in three distinct cell systems reveals that RFX7 directly controls multiple established tumor suppressors, including PDCD4, PIK3IP1, MXD4, and PNRC1, across cell types and is the missing link for their activation in response to p53 and stress. RFX7 target gene expression correlates with cell differentiation and better prognosis in numerous cancer types. Interestingly, we find that RFX7 sensitizes cells to Doxorubicin by promoting apoptosis. Together, our work establishes RFX7’s role as a ubiquitous regulator of cell growth and fate determination and a key node in the p53 transcriptional program.
Despite its prominence, the mechanisms through which the tumor suppressor p53 regulates most genes remain unclear. Recently, the regulatory factor X 7 (RFX7) emerged as a suppressor of lymphoid neoplasms, but its regulation and target genes mediating tumor suppression remain unknown. Here, we identify a novel p53-RFX7 signaling axis. Integrative analysis of the RFX7 DNA binding landscape and the RFX7-regulated transcriptome in three distinct cell systems reveals that RFX7 directly controls multiple established tumor suppressors, including PDCD4, PIK3IP1, MXD4, and PNRC1, across cell types and is the missing link for their activation in response to p53 and stress. RFX7 target gene expression correlates with cell differentiation and better prognosis in numerous cancer types. Interestingly, we find that RFX7 sensitizes cells to Doxorubicin by promoting apoptosis. Together, our work establishes RFX7's role as a ubiquitous regulator of cell growth and fate determination and a key node in the p53 transcriptional program.
In recent years the tumor suppressor p53 has been increasingly recognized as a potent regulator of the cell metabolism and for its ability to inhibit the critical pro-survival kinases AKT and mTOR. The mechanisms through which p53 controls AKT and mTOR, however, are largely unclear. Here, we demonstrate that p53 activates the metabolic regulator DDIT4 indirectly through the regulatory factor X 7 (RFX7). We provide evidence that DDIT4 is required for p53 to inhibit mTOR complex 2 (mTORC2)-dependent AKT activation. Most strikingly, we also find that the DDIT4 regulator RFX7 is required for p53-mediated inhibition of mTORC1 and AKT. Our results suggest that AMPK activation plays no role and p53-mediated AKT inhibition is not critical for p53-mediated mTORC1 inhibition. Moreover, using recently developed physiological cell culture media we uncover that basal p53 and RFX7 activity can play a critical role in restricting mTORC1 activity under physiological nutrient conditions, and we propose a nutrient-dependent model for p53-RFX7-mediated mTORC1 inhibition. These results establish RFX7 and its downstream target DDIT4 as essential effectors in metabolic control elicited by p53.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.