LRRK2 mutations have recently been described in families with Parkinson's disease. Here we show that one of them (G2019S) is present in 6% (7 of 124) unrelated cases of disease in a clinic-based sample series from central Portugal, but not present in 126 controls from the same population. Thus, LRRK2 mutations appear to be a common cause of typical Parkinson's disease and as such will alter clinical practice.
Motivation and aim Soil biodiversity is central to ecosystem function and services. It represents most of terrestrial biodiversity and at least a quarter of all biodiversity on Earth. Yet, research into broad, generalizable spatial and temporal patterns of soil biota has been limited compared to aboveground systems due to complexities of the soil system. We review the literature and identify key considerations necessary to expand soil macroecology beyond the recent surge of global maps of soil taxa, so that we can gain greater insight into the mechanisms and processes shaping soil biodiversity. We focus primarily on three groups of soil taxa (earthworms, mycorrhizal fungi and soil bacteria) that represent a range of body sizes and ecologies, and, therefore, interact with their environment at different spatial scales. Results The complexities of soil, including fine‐scale heterogeneity, 3‐D habitat structure, difficulties with taxonomic delimitation, and the wide‐ranging ecologies of its inhabitants, require the classical macroecological toolbox to be expanded to consider novel sampling, molecular identification, functional approaches, environmental variables, and modelling techniques. Main conclusions Soil provides a complex system within which to apply macroecological research, yet, it is this property that itself makes soil macroecology a field ripe for innovative methodologies and approaches. To achieve this, soil‐specific data, spatio‐temporal, biotic, and abiotic considerations are necessary at all stages of research, from sampling design to statistical analyses. Insights into whole ecosystems and new approaches to link genes, functions and diversity across spatial and temporal scales, alongside methodologies already applied in aboveground macroecology, invasion ecology and aquatic ecology, will facilitate the investigation of macroecological processes in soil biota, which is key to understanding the link between biodiversity and ecosystem functioning in terrestrial ecosystems.
Mutations in GIGYF2 have recently been described as causative of Parkinson's disease in Europeans. In an attempt to replicate these results in independent populations, we sequenced the entire coding region of GIGYF2 in a large series of Portuguese and North American samples. We report the finding of two of the previously published mutations in neurologically normal Control individuals. This suggests that mutations in GIGYF2 are not strongly related to the development of the disease in either of these populations.
Communities of organisms inhabiting extreme terrestrial environments provide a unique opportunity to study evolutionary forces that drive population structure and genetic diversity under the combined challenges posed by multiple geogenic stressors. High abundance of an invasive pantropical earthworm (and the absence of indigenous lumbricid species) in the Furnas geothermal field (Sao Miguel Island, Azores) indicates its remarkable tolerance to high soil temperature, exceptionally high carbon dioxide and low oxygen levels, and elevated metal bioavailability, conditions which are lethal for the majority of terrestrial metazoans. Mitochondrial and nuclear markers were used to analyze the relationship between populations living inside and outside the geothermal field. Results showed that Pontoscolex corethrurus (Annelida, Oligochaeta, Glossoscolecidae) to be a genetically heterogeneous complex within the Sao Miguel landscape and is probably differentiated into cryptic species. The population exposed to the hostile soil conditions within the volcanic caldera possesses the lowest within-population mitochondrial diversity but an unexpectedly high degree of nuclear variability with several loci evidencing positive selection, parameters indicative of a genetically unique population only distantly related to conspecifics living outside the caldera. In conclusion, P. corethrurus inhabiting active volcanic soil is a discrete extremophile population that has evolved by tolerating a mixture of nonanthropogenic chemical and physical stressors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.