The utilization of carbon dioxide as a polymer feedstock is an ongoing challenge. This report describes the catalytic conversion of carbon dioxide and an olefin comonomer, 1,3-butadiene, into a polymer structure that arises from divergent propagation mechanisms. Disubstituted unsaturated δ-valerolactone 1 (EVL) was homopolymerized by the bifunctional organocatalyst 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) to produce a hydrolytically degradable polymer. Isolation and characterization of reaction intermediates using 1H, 13C, COSY, HSQC, and MS techniques revealed a vinylogous 1,4-conjugate addition dimer forms in addition to polymeric materials. Polymer number-average molecular weights up to 3760 g/mol and glass transition temperatures in the range of 25–52 °C were measured by GPC and DSC, respectively. The polymer microstructure was characterized by 1H, 13C, FTIR, MALDI-TOF MS, and ESI tandem MS/MS. The olefin/CO2-derived materials depolymerized by hydrolysis at 80 °C in 1 M NaOH. This method and the observed chemical structures expand the materials and properties that can be obtained from carbon dioxide and olefin feedstocks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.