Abstract. Calderón-Zygmund operators with noncommuting kernels may fail to be Lp-bounded for p = 2, even for kernels with good size and smoothness properties. Matrix-valued paraproducts, Fourier multipliers on group vNa's or noncommutative martingale transforms are frameworks where we find such difficulties. We obtain weak type estimates for perfect dyadic CZO's and cancellative Haar shifts associated to noncommuting kernels in terms of a row/column decomposition of the function. Arbitrary CZO's satisfy H 1 → L 1 type estimates. In conjunction with L∞ → BMO, we get certain row/column Lp estimates. Our approach also applies to noncommutative paraproducts or martingale transforms with noncommuting symbols/coefficients. Our results complement recent results of Junge, Mei, Parcet and Randrianantoanina.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.