Abstract-Bone marrow mononuclear cells (BMCs) from 20 patients with extensive reperfused myocardial infarction (MI) were used to assess their myocardial regenerative capability "in vitro" and their effect on postinfarction left ventricular (LV) remodeling. Human BMCs were labeled, seeded on top of cryoinjured mice heart slices, and cultured. BMCs showed tropism for and ability to graft into the damaged mouse cardiac tissue and, after 1 week, acquired a cardiomyocyte phenotype and expressed cardiac proteins, including connexin43. In the clinical trial, autologous BMCs (78Ϯ41ϫ10 6 per patient) were intracoronarily transplanted 13.5Ϯ5.5 days after MI. There were no adverse effects on microvascular function or myocardial injury. No major cardiac events occurred up to 11Ϯ5 months. At 6 months, magnetic resonance showed a decrease in the end-systolic volume, improvement of regional and global LV function, and increased thickness of the infarcted wall, whereas coronary restenosis was only 15%. No changes were found in a nonrandomized contemporary control group. Thus, BMCs are capable of nesting into the damaged myocardium and acquire a cardiac cell phenotype in vitro as well as safely benefiting ventricular remodeling in vivo. Large-scale randomized trials are needed now to assess the clinical efficacy of this treatment.
There is a considerable clinical need for alternatives to the autologous vein and artery tissues used for vascular reconstructive surgeries such as CABG, lower limb bypass, arteriovenous shunts and repair of congenital defects to the pulmonary outflow tract. So far, synthetic materials have not matched the efficacy of native tissues, particularly in small diameter applications. The development of cardiovascular tissue engineering introduced the possibility of a living, biological graft that might mimic the functional properties of native vessels. While academic research in the field of tissue engineering in general has been active, as yet there has been no clear example of clinical and commercial success. The recent transition of cell-based therapies from experimental to clinical use has, however, reinvigorated the field of cardiovascular tissue engineering. Here, we discuss the most promising approaches specific to tissue-engineered blood vessels and briefly introduce our recent clinical results. The unique regulatory, reimbursement and production challenges facing personalized medicine are also discussed.
From a traditional viewpoint, skeletal elements form by two distinct processes: endochondral ossification, during which a cartilage template is replaced by bone, and intramembranous ossification, whereby mesenchymal cells differentiate directly into osteoblasts. There are inherent difficulties with this historical classification scheme, not the least of which is that bones typically described as endochondral actually form bone through an intramembranous process, and that some membranous bones may have a transient chondrogenic phase. These innate contradictions can be circumvented if molecular and cellular, rather than histogenic, criteria are used to describe the process of skeletal tissue formation. Within the past decade, clinical examinations of human skeletal syndromes have led to the identification and subsequent characterization of regulatory molecules that direct chondrogenesis and osteogenesis in every skeletal element of the body. In this review, we survey these molecules and the tissue interactions that may regulate their expression. What emerges is a new paradigm, by which we can explain and understand the process of normal- and abnormal-skeletal development.
A null mutation in the morphogen Indian hedgehog (IHH) results in an embryonic lethal phenotype characterized by the conspicuous absence of bony tissue in the extremities. We show that this ossification defect is not attributable to a permanent arrest in cartilage differentiation, since Ihh-/- chondrocytes undergo hypertrophy and terminal differentiation, express angiogenic markers such as Vegf, and are invaded, albeit aberrantly, by blood vessels. Subsequent steps, including vessel expansion and persistence, are impaired, and the net result is degraded cartilage matrix that is devoid of blood vessels. The absence of blood vessels is not because the Ihh-/- skeleton is anti-angiogenic; in fact, in an ex vivo environment, both wild-type and Ihh mutant vessels invade the Ihh-/- cartilage, though only wild-type vessels expand to create the marrow cavity. In the ex vivo setting, Ihh-/- cells differentiate into osteoblasts and deposit a bony matrix, without benefit of exogenous hedgehog in the new environment. Even more surprising is our finding that the earliest IHH-dependent skeletal defect is obvious by the time the limb mesenchyme segregates into chondrogenic and perichondrogenic condensations. Although Ihh-/- cells organize into chondrogenic condensations similar in size and shape to wild-type condensations, perichondrial cells surrounding the mutant condensations are clearly faulty. They fail to aggregate, elongate and flatten into a definitive, endothelial cell-rich perichondrium like their wild-type counterparts. Normally, these cells surrounding the chondrogenic condensation are exposed to IHH, as evidenced by their expression of the hedgehog target genes, patched (Ptch) and Gli1. In the mutant environment,the milieu surrounding the cartilage - comprising osteoblast precursors and endothelial cells - as well as the cartilage itself, develop in the absence of this important morphogen. In conclusion, the skeletal phenotype of Ihh-/- embryos represents the sum of disturbances in three separate cell populations, the chondrocytes, the osteoblasts and the vasculature, each of which is a direct target of hedgehog signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.