The development of high-throughput genotyping has made genome-wide association (GWAS) and genomic selection (GS) applications possible for both model and non-model species. The exploitation of genome-assisted approaches could greatly benefit breeding efforts in American cranberry (Vaccinium macrocarpon) and other minor crops. Using biparental populations with different degrees of relatedness, we evaluated multiple GS methods for total yield (TY) and mean fruit weight (MFW). Specifically, we compared predictive ability (PA) differences between univariate and multivariate genomic best linear unbiased predictors (GBLUP and MGBLUP, respectively). We found that MGBLUP provided higher predictive ability (PA) than GBLUP, in scenarios with medium genetic correlation (8–17% increase with corg~0.6) and high genetic correlations (25–156% with corg~0.9), but found no increase when genetic correlation was low. In addition, we found that only a few hundred single nucleotide polymorphism (SNP) markers are needed to reach a plateau in PA for both traits in the biparental populations studied (in full linkage disequilibrium). We observed that higher resemblance among individuals in the training (TP) and validation (VP) populations provided greater PA. Although multivariate GS methods are available, genetic correlations and other factors need to be carefully considered when applying these methods for genetic improvement.
Since its domestication 200 years ago, breeding of the American cranberry (Vaccinium macrocarpon) has relied on phenotypic selection because applicable resources for molecular improvement strategies such as marker-assisted selection (MAS) remain limited. To enable MAS in cranberry, the first high-density SSR linkage map with 541 markers representing all 12 cranberry chromosomes was constructed for the CNJ02-1 progeny from a cross of elite cultivars, CNJ97-105-4 and NJ98-23. The population was phenotyped for a 3-year period for total yield (TY), mean fruit weight (MFW), and biennial bearing index (BBI), and data were analyzed using mixed models and best linear unbiased predictors (BLUPs). Significant differences between genotypes were observed for all traits. Quantitative trait loci (QTL) analyses using BLUPs identified four MFW QTL on three linkage groups (LGs), three TY QTL on three LGs, and one BBI QTL which colocalized with a TY QTL. Local BLAST of a cranberry nuclear genome assembly identified homologous sequences for the mapped SSRs which were then anchored to 12 pseudo-chromosomes using the linkage map information. Analyses comparing coding regions (CDS) anchored in the cranberry linkage map with grape, kiwifruit, and tomato genomes were Electronic supplementary material The online version of this article (
The American cranberry (Vaccinium macrocarpon Ait.) is an iconic North American fruit crop of great cultural and economic importance. Cranberry can be considered a fruit crop model due to its unique fruit nutrient composition, overlapping generations, recent domestication, both sexual and asexual reproduction modes, and the existence of cross-compatible wild species. Development of cranberry molecular resources started very recently; however, further genetic studies are now being limited by the lack of a high-quality genome assembly. Here, we report the first chromosome-scale genome assembly of cranberry, cultivar Stevens, and a draft genome of its close wild relative species Vaccinium microcarpum. More than 92% of the estimated cranberry genome size (492 Mb) was assembled into 12 chromosomes, which enabled gene model prediction and chromosome-level comparative genomics. Our analysis revealed two polyploidization events, the ancient γ-triplication, and a more recent whole genome duplication shared with other members of the Ericaeae, Theaceae and Actinidiaceae families approximately 61 Mya. Furthermore, comparative genomics within the Vaccinium genus suggested cranberry-V. microcarpum divergence occurred 4.5 Mya, following their divergence from blueberry 10.4 Mya, which agrees with morphological differences between these species and previously identified duplication events. Finally, we identified a cluster of subgroup-6 R2R3 MYB transcription factors within a genomic region spanning a large QTL for anthocyanin variation in cranberry fruit. Phylogenetic analysis suggested these genes likely act as anthocyanin biosynthesis regulators in cranberry. Undoubtedly, these new cranberry genomic resources will facilitate the dissection of the genetic mechanisms governing agronomic traits and further breeding efforts at the molecular level.
BackgroundDetermination of microsatellite lengths or other DNA fragment types is an important initial component of many genetic studies such as mutation detection, linkage and quantitative trait loci (QTL) mapping, genetic diversity, pedigree analysis, and detection of heterozygosity. A handful of commercial and freely available software programs exist for fragment analysis; however, most of them are platform dependent and lack high-throughput applicability.ResultsWe present the R package Fragman to serve as a freely available and platform independent resource for automatic scoring of DNA fragment lengths diversity panels and biparental populations. The program analyzes DNA fragment lengths generated in Applied Biosystems® (ABI) either manually or automatically by providing panels or bins. The package contains additional tools for converting the allele calls to GenAlEx, JoinMap® and OneMap software formats mainly used for genetic diversity and generating linkage maps in plant and animal populations. Easy plotting functions and multiplexing friendly capabilities are some of the strengths of this R package. Fragment analysis using a unique set of cranberry (Vaccinium macrocarpon) genotypes based on microsatellite markers is used to highlight the capabilities of Fragman.ConclusionFragman is a valuable new tool for genetic analysis. The package produces equivalent results to other popular software for fragment analysis while possessing unique advantages and the possibility of automation for high-throughput experiments by exploiting the power of R.Electronic supplementary materialThe online version of this article (doi:10.1186/s12863-016-0365-6) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.