By means of simple dynamical experiments we study the combined effect of gravitational and gas dynamics in the evolution of an initially out-of-equilibrium, uniform and rotating massive overdensity thought of as in isolation. The rapid variation of the system mean-field potential makes the point like particles (PPs), which interact only via Newtonian gravity, form a quasistationary thick disk dominated by rotational motions surrounded by far out-of-equilibrium spiral arms. On the other side, the gas component is subjected to compression shocks and radiative cooling so as to develop a much flatter disk, where rotational motions are coherent and the velocity dispersion is smaller than that of PPs. Around such gaseous disk long-lived, but nonstationary, spiral arms form: these are made of gaseous particles that move coherently because have acquired a specific phasespace correlation during the gravitational collapse phase. Such a phase-space correlation represents a signature of the violent origin of the arms and implies both the motion of matter and the transfer of energy. On larger scales, where the radial velocity component is significantly larger than the rotational one, the gas follows the same out-of-equilibrium spiral arms traced by PPs We finally outline the astrophysical and cosmological implications of our results.
The study of the stability of massive gaseous disks around a star in a nonisolated context is a difficult task and becomes even more complicated for disks that are hosted by binary systems. The role of self-gravity is thought to be significant when the ratio of the disk-to-star mass is non-negligible. To solve these problems, we implemented, tested, and applied our own smoothed particle hydrodynamics (SPH) algorithm. The code (named GaSPH) passed various quality tests and shows good performances, and it can therefore be reliably applied to the study of disks around stars when self-gravity needs to be accounted for. We here introduce and describe the algorithm, including some performance and stability tests. This paper is the first part of a series of studies in which self-gravitating disks in binary systems are let evolve in larger environments such as open clusters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.