The high tropical Andes host one of the richest alpine floras of the world, with exceptionally high levels of endemism and turnover rates. Yet, little is known about the patterns and processes that structure altitudinal and latitudinal variation in plant community diversity. Herein we present the first continental‐scale comparative study of plant community diversity on summits of the tropical Andes. Data were obtained from 792 permanent vegetation plots (1 m2) within 50 summits, distributed along a 4200 km transect; summit elevations ranged between 3220 and 5498 m a.s.l. We analyzed the plant community data to assess: 1) differences in species abundance patterns in summits across the region, 2) the role of geographic distance in explaining floristic similarity and 3) the importance of altitudinal and latitudinal environmental gradients in explaining plant community composition and richness. On the basis of species abundance patterns, our summit communities were separated into two major groups: Puna and Páramo. Floristic similarity declined with increasing geographic distance between study‐sites, the correlation being stronger in the more insular Páramo than in the Puna (corresponding to higher species turnover rates within the Páramo). Ordination analysis (CCA) showed that precipitation, maximum temperature and rock cover were the strongest predictors of community similarity across all summits. Generalized linear model (GLM) quasi‐Poisson regression indicated that across all summits species richness increased with maximum air temperature and above‐ground necromass and decreased on summits where scree was the dominant substrate. Our results point to different environmental variables as key factors for explaining vertical and latitudinal species turnover and species richness patterns on high Andean summits, offering a powerful tool to detect contrasting latitudinal and altitudinal effects of climate change across the tropical Andes.
Using data from 50 long-term permanent plots from across Venezuelan forests in northern South America, we explored large-scale patterns of stem turnover, aboveground biomass (AGB) and woody productivity (AGWP), and the relationships between them and with potential climatic drivers. We used principal component analysis coupled with generalized least squares models to analyze the relationship between climate, forest structure and stem dynamics. Two major axes associated with orthogonal temperature and moisture gradients effectively described more than 90% of the environmental variability in the dataset. Average turnover was 1.91 ± 0.10% year-1 with mortality and recruitment being almost identical, and close to average rates for other mature tropical forests. Turnover rates were significantly different among regions (p < 0.001), with the lowland forests in Western alluvial plains being the most dynamic, and Guiana Shield forests showing the lowest turnover rates. We found a weak positive relationship between AGB and AGWP, with Guiana Shield forests having the highest values for both variables (204.8 ± 14.3 Mg C ha-1 and 3.27 ± 0.27 Mg C ha-1 year-1 respectively), but AGB was much more strongly and negatively related to stem turnover. Our data suggest that moisture is a key driver of turnover, with longer dry seasons favoring greater rates of tree turnover and thus lower biomass, having important implications in the context of climate change, given the increases in drought frequency in many tropical forests. Regional variation in AGWP among Venezuelan forests strongly reflects the effects of climate, with greatest woody productivity where both precipitation and temperatures are high. Overall, forests in wet, low elevation sites and with slow turnover stored the greatest amounts of biomass. Although faster stand dynamics are closely associated with lower carbon storage, stem-level turnover rates and woody productivity did not show any correlation, indicating that stem dynamics and carbon dynamics are largely decoupled from one another.
Glaciers are receding at unprecedented rates in the alpine tropics, opening-up new areas for ecosystem assembly. However, little is known about the patterns/mechanisms of primary succession during the last stages of glacier retreat in tropical mountains. Our aim was to analyze soil development and vegetation assembly during primary succession, and the role of changing adaptive strategies and facilitative interactions on these processes at the forefront of the last Venezuelan glacier (Humboldt Peak, 4,940 m asl). We established a chronosequence of four sites where the glacier retreated between 1910 and 2009. We compared soil organic matter (SOM), nutrients and temperatures inside vs. outside biological soil crusts (BSCs) at each site, estimated the cover of lichen, bryophyte and vascular plant species present, and analyzed changes in their growth-form abundance and species/functional turnover. We also evaluated local spatial associations between lichens/bryophytes and the dominant ruderal vascular plant (the grass Poa petrosa). We found a progressive increase in SOM during the first century of succession, while BSCs only had a positive buffering effect on superficial soil temperatures. Early seral stages were dominated by lichens and bryophytes, while vascular plant cover remained low during the first six decades, and was almost exclusively represented by wind dispersed/pollinated grasses. There was a general increase in species richness along the chronosequence, but it declined in late succession for lichens. Lichen and bryophyte communities exhibited a higher species turnover than vascular plants, resulting in the loss of some pioneer specialists as succession progressed. Lichen and bryophyte species were positively associated with safe-sites for the colonization of the dominant ruderal grass, suggesting a possible facilitation effect. Our results indicate that lichens and bryophytes play a key role as pioneers in these high tropical alpine environments. The limited initial colonization of vascular plants and the progressive accumulation of species and growth-forms (i.e., direct succession) could be linked to a combination of severe environmental filtering during early seral stages and limitations for zoochoric seed dispersal and entomophilic/ornithophilic pollination. This could potentially result in a slow successional response of these ecosystems to accelerated glacier loss and climate change.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.