Bidirectional trans‐synaptic signaling is essential for the formation, maturation, and plasticity of synaptic connections. Synaptic cell adhesion molecules (CAMs) are prime drivers in shaping the identities of trans‐synaptic signaling pathways. A series of recent studies provide evidence that diverse presynaptic cell adhesion proteins dictate the regulation of specific synaptic properties in postsynaptic neurons. Focusing on mammalian synaptic CAMs, this article outlines several exemplary cases supporting this notion and highlights how these trans‐synaptic signaling pathways collectively contribute to the specificity and diversity of neural circuit architecture.
Thousands of people suffer from nausea with pregnancy each year. Nausea can be alleviated with cannabidiol (CBD), a primary component of cannabis that is widely available. However, is it unknown how fetal CBD exposure affects embryonic development and postnatal outcomes. CBD binds and activates receptors that are important for fetal development and are expressed in the fetal brain, including serotonin receptors (5HT1A), voltage-gated potassium (Kv)7 receptors, and the transient potential vanilloid 1 receptor (TRPV1). Excessive activation of each of these receptors during fetal development can disrupt neurodevelopment. Here, we test the hypothesis that intrauterine CBD exposure alters offspring neurodevelopment and postnatal behavior. We show that fetal CBD exposure sensitizes male offspring to thermal pain in a TRPV1 dependent manner. We show that fetal CBD exposure decreases cognitive function in female CBD-exposed offspring. We demonstrate that fetal CBD exposure increases the minimum current required to elicit action potentials and decreases the number of action potentials in female offspring layer 2/3 prefrontal cortex (PFC) pyramidal neurons. Fetal CBD exposure reduces the amplitude of glutamate uncaging-evoked excitatory post-synaptic currents. Combined, these data show that fetal CBD exposure disrupts neurodevelopment and postnatal behavior in a sex-dependent manner.
Thousands of people suffer from nausea with pregnancy each year. Nausea can be alleviated with cannabidiol (CBD), a primary component of cannabis that is widely available. However, it is unknown how fetal CBD exposure affects embryonic development and postnatal outcomes. CBD binds and activates receptors that are expressed in the fetal brain and are important for brain development, including serotonin receptors (5HT1A), voltage-gated potassium (Kv)7 receptors, and the transient potential vanilloid 1 receptor (TRPV1). Excessive activation of each of these receptors can disrupt neurodevelopment. Here, we test the hypothesis that fetal CBD exposure in mice alters offspring neurodevelopment and postnatal behavior. We administered 50 mg/kg CBD in sunflower oil or sunflower oil alone to pregnant mice from embryonic day 5 through birth. We show that fetal CBD exposure sensitizes adult male offspring to thermal pain through TRPV1. We show that fetal CBD exposure decreases problem-solving behaviors in female CBD-exposed offspring. We demonstrate that fetal CBD exposure increases the minimum current required to elicit action potentials and decreases the number of action potentials in female offspring layer 2/3 prefrontal cortex (PFC) pyramidal neurons. Fetal CBD exposure reduces the amplitude of glutamate uncaging-evoked excitatory post-synaptic currents, consistent with CBD-exposed female problem-solving behavior deficits. Combined, these data show that fetal CBD exposure disrupts neurodevelopment and postnatal behavior in a sex specific manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.