After fertilization, the sperm and egg contribute unequally to the newly formed zygote. While the sperm contributes mainly paternal DNA, the egg provides both maternal DNA and the bulk of the future embryonic cytoplasm. Most embryonic processes (like the onset of zygotic transcription) depend on maternally-provided cytoplasmic components, and it is largely unclear whether paternal components besides the centrosome play a role in the regulation of early embryogenesis. Here we report a reciprocal zebrafish-medaka hybrid system as a powerful tool to investigate paternal vs. maternal influence during early development. By combining expression of zebrafish Bouncer on the medaka egg with artificial egg activation, we demonstrate the in vitro generation of paternal zebrafish x maternal medaka (reripes) hybrids. These hybrids complement the previously established paternal medaka x maternal zebrafish (latio) hybrids (Herberg et al., 2018). As proof of concept, we investigated maternal vs. paternal control of zygotic genome activation (ZGA) timing using this reciprocal hybrid system. RNA-seq analysis of the purebred fish species and hybrids revealed that the onset of ZGA is primarily governed by the egg. Overall, our study establishes the reciprocal zebrafish-medaka hybrid system as a versatile tool to dissect parental control mechanisms during early development.
Post-transcriptional mechanisms are crucial for the regulation of gene expression.These mechanisms are particularly important during rapid developmental transitions such as the oocyte-to-embryo transition, which is characterized by dramatic changes to the developmental program in the absence of nuclear transcription. Under these conditions, changes to the RNA content are solely dependent on RNA degradation.Although several mechanisms that promote RNA decay during embryogenesis have been identified, it remains unclear which cellular machineries contribute to remodeling the maternal transcriptome during the oocyte-to-embryo transition. Here, we focused on the auxiliary 3'-to-5' degradation factor Ski7 in zebrafish as its mRNA peaks during this time frame. Homozygous ski7 mutant fish were viable and developed into morphologically normal adults, yet they had decreased fertility. Consistent with the idea that Ski7 participates in remodeling the transcriptome during the oocyte-toembryo transition, transcriptome profiling identified stage-specific mRNA targets of Ski7. Genes upregulated in ski7 mutants were generally lowly expressed in wild type, suggesting that Ski7 maintains low transcript levels for this subset of genes. GO enrichment analyses of genes mis-regulated in ski7 mutants implicated Ski7 in the regulation of redox processes. This was confirmed experimentally by an increased resistance of ski7 mutant embryos to reductive stress. Overall, our results provide first insights into the physiological role of vertebrate Ski7 as an important posttranscriptional regulator during the oocyte-to-embryo transition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.