A hybrid approach for light trapping using photonic crystal nanostructures (nanorods, nanopillars or nanoholes) on top of an ultra thin film as a substrate is presented. The combination of a nanopatterned layer with a thin substrate shows an enhanced optical absorption than equivalent films without patterning and can compete in performance with nanostructured systems without a substrate. The designs are tested in four relevant materials: amorphous silicon (a-Si), crystalline silicon (Si), gallium arsenide (GaAs) and indium phosphide (InP). A consistent enhancement is observed for all of the materials when using a thin hybrid system (300 nm) even compared to the non patterned thin film with an anti-reflective coating (ARC). A realistic solar cell structure composed of a hybrid system with a layer of indium tin oxide (ITO) an ARC and a back metal layer is performed, showing an 18% of improvement for the nanostructured device.
We provide a methodology for the study of a photonic crystal microcavity and a quantum well (QW) in the strong coupling regime by finite difference in the time domain. Numerical results for an InP L7 photonic crystal microcavity coupled to an ideal QW are provided. A comparison of the time analysis processed by the discrete Fourier transform, the Padé approximant, and harmonic inversion is presented to optimize the computation time. We present a method to solve the uncertainty of the frequency spectrum depending on the starting time used in the spectral analysis. The influence of polarization anisotropy on strong coupling is studied. The Rabi splitting is exactly zero only when the induced polarization in the QW is aligned with a field component incompatible with the symmetry of the mode.
A hybrid approach for light trapping using photonic crystal (PC) nanostructures (nanorods, nanopillars or nanoholes) on top of an ultra-thin film is presented. The combination of a nanopatterned layer with a thin substrate shows an enhanced optical absorption than equivalent films without patterning and can compete in performance with nanostructured systems without a substrate. The designs are tested in four relevant materials: amorphous silicon (a-Si), crystalline silicon (Si), gallium arsenide (GaAs) and indium phosphide (InP). A consistent enhancement is observed for all of the materials when using a thin hybrid system (300 nm) even compared to the non-patterned thin film with an anti-reflective coating (ARC). A realistic solar cell structure composed of a hybrid system with a layer of indium tin oxide (ITO) an ARC and a back metal layer is simulated, showing an 13% of improvement for the nanostructured device.
We investigate 1D-2D photonic crystals for light absorption enhancement on thin film photovoltaics (Si, GaAs an InP) by FDTD. A comparison with RCWA and TMM is presented. The absorption is increased substantially for these systems. OCIS codes: (160.5298) Photonic crystal; (310.6845) Thin film devices and applications; (040.5350) Photovoltaic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.