Microstructural features of sintered steels, which comprise both phases and porosity, strongly condition the mechanical behaviour of the material under service conditions. Many research activities have dealt with this relationship since better understanding of the microstructure-property correlation is the key of improvement of current powder metallurgy (PM) steels. Up to now, fractographic investigation after testing has been successfully applied for this purpose and, more recently, the in situ analysis of crack evolution through the microstructure as well as some advanced computer assisted tools. However, there is still a lack of information about local mechanical behaviour and strain distributions at the microscale in relation to the local microstructure of these steels, i.e. which phases in heterogeneous PM microstructures contribute to localisation of plastic deformation or which phases can impede crack propagation during loading. In the present work, these questions are addressed through the combination of three techniques: (i) in situ tensile testing (performed in the SEM) to monitor crack initiation and propagation; (ii) digital image correlation technique to trace the progress of local strain distributions during loading; (iii) fractographic examination of the loaded samples. Three PM steels, all obtained from commercially available powders but presenting different microstructures, are examined: a ferriticpearlitic Fe-C steel, a bainitic prealloyed Fe-Mo-C steel and a diffusion alloyed Fe-Ni-Cu-Mo-C steel, with more heterogeneous microstructure (ferrite, pearlite, upper and lower bainite, martensite and Ni rich austenite).
Although they are non-educational institutions, financial institutions have specific training needs. The greatest priority in employee training arises when the bank launches a new financial product or service. The difficulty, in such cases, lies in training the employees in all the regional branches so that they can offer good service to meet the clients’ demand for the product.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.