Therapeutic intervention to skin wounds requires covering the affected area with wound dressings. Interdisciplinary efforts have focused on the development of smart bandages that can perform multiple functions. In this direction, here, we designed a low cost (U$0.012 per cm 2 ) multifunctional therapeutic wound dressing fabricated by loading curcumin (CC) into poly(ϵ-caprolactone) (PCL) nanofibers using solution blow spinning (SBS). The freestanding PCL/CC bandages were characterized by distinct physicochemical approaches and were successful in performing varied functions, including controlled release of CC, colorimetric indication of the wound conditions, barrier against microorganisms, being biocompatible, and providing a photosensitive platform for antimicrobial photodynamic therapy (aPDT). The chemical nature of PCL and CC and the interactions between these components allowed CC to be released for 192 h (ca. 8 days), which could be correlated with the Korsmeyer−Peppas model, with a burst release suitable to treat the inflammatory phase. Due to the CC keto−enol tautomerism, an optical indication of the healing status could be obtained using PCL/CC, which occurred immediately, ranging between red/orange and yellow shades. The effect against pathogenic microorganisms evaluated by agar disc-diffusion, affected skin wound simulation (ex vivo), and microbial penetration tests demonstrated the ability to block and inhibit microbial permeation in different environments. The biocompatibilities of PCL and PCL/CC were verified by in vitro cytotoxicity study, which demonstrated that cell viabilities average above 94 and 96% for human dermal fibroblasts. In addition, the proposed bandage responded to aPDT applied to an in vivo assay, showing that, when irritated, PCL/CC was able to reduce the bacteria present on the real wound of mice. In summary, our findings demonstrate that using PCL and CC to produce nonwovens by the SBS technique offers potential for the rapid fabrication of biocompatible and multifunctional wound dressings, paving the way for large-scale production and utilization of such dressings in the treatment of skin wounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.