Lipid-lowering response to statin therapy shows large interindividual variability. At a genome-wide significance level, single nucleotide polymorphisms (SNPs) in PCSK9 and HMGCR have been implicated in this differential response. However, the influence of these variants is uncertain in the Chilean population. Hence, we aimed to evaluate the contribution of PCSK9 rs7552841 and HMGCR rs17671591 SNPs as genetic determinants of atorvastatin response in Chilean hypercholesterolaemic individuals. One hundred and one hypercholesterolaemic patients received atorvastatin 10 mg/day for 4 weeks. Plasma lipid profile (TC, HDL-C, LDL-C and TG) was determined before and after statin treatment, and SNPs were identified by allelic discrimination using TaqMan â SNP Genotyping Assays. Adjusted univariate and multivariate analyses' models were used for statistical analyses, and a p-value <0.05 was considered significant. From baseline (week 0) to the study end-point (week 4), significant reductions were observed in plasma TC, LDL-C and TG (p < 0.001), while HDL-C levels were increased (p < 0.001). Multivariate analysis showed no association between lipid levels and atorvastatin therapy for the PCSK9 variant. However, the HMGCR rs17671591 T allele contributed to basal HDL-C concentration variability along with a higher increase in this lipid fraction after statin medication. In addition, this allele determined greater plasma LDL-C reductions after therapy with atorvastatin. Our data suggest that the HMGCR rs17671591 polymorphism can constitute a genetic marker of lower plasma LDL-C and enhanced HDL-C concentration after atorvastatin therapy in the Chilean population.
Introducción: En la actualidad, la Minería de Datos es cada vez más popular en el campo de la salud porque existe una necesidad de eficiencia metodológica y analítica para detectar información desconocida y valiosa en datos de salud. Objetivo: Desarrollar un modelo predictivo utilizando técnicas de minería de datos, específicamente Arboles de Decisión, para pesquisar pacientes con propensión a desarrollar Diabetes Tipo II (DM II), Hipertensión Arterial (HTA) o Dislipidemia (DLP). Método: Se analizó el problema de los Factores de Riesgo Cardiovascular Mayores desde una perspectiva de procesos y se estudiaron las técnicas que permiten descubrir el conocimiento del fenómeno almacenado en las bases de datos de Examen de Medicina Preventiva del Adulto (EMPA) de la Población en Control Cardiovascular que presenta DM II, HTA o DLP Resultados: El Algoritmo C5, presenta un mayor poder predictivo, respecto de otros algoritmos de Árbol de Decisión. Se comprobó que las variables Edad y Circunferencia de Cintura fueron las de mayor poder de discriminación en el padecimiento de DM2, HTA o DLP. El algoritmo C5 alcanzó una precisión global de un 83,01% en la partición de prueba, luego en la misma partición el modelo logra discriminar un paciente con algunas de las patologías en el 85,25% de los casos, y uno que no presenta alguna de las patologías en un 80,27% de las oportunidades. Conclusión: La Minería de Datos y en este caso, específicamente los Modelos de Árboles de Decisión son una alternativa válida para la pesquisa cardiovascular temprana. Palabras Clave: pesquisa cardiovascular; minería de datos; árboles de decisión; diabetes mellitus II; hipertensión arterial; dislipidemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.