A de novo reciprocal translocation 46,X,t(Y;1)(q12;q12) was found in an azoospermic male with meiotic arrest. Cytogenetics and fluorescent in situ hybridization (FISH) were used to define the karyotype, translocation breakpoints and homologue pairing. SRY (Yp), Yq11.2-AZF regions, DAZ gene copies and the distal Yq12 heterochromatin were studied by PCR and restriction analysis using sequence-tagged sites and single nucleotide variants. High resolution GTL, CBL and DA-DAPI staining revealed a (Y;1) translocation in all metaphases and a normal karyotype in the patient's father. FISH showed the presence of the distal Yq12 heterochromatic region in der(1) and loss of the heterochromatic region of chromosome 1. PCR demonstrated the intactness of the Y chromosome, including the SRY locus, AZF regions, DAZ genes and distal heterochromatin. A significant decrease (P = 0.005) of Xp/Yp pairing (18.6%), as compared with controls (65.7%), was found in arrested primary spermatocytes, and cell culture and mRNA expression studies confirmed an irreversible arrest at meiosis I, with induction of apoptosis and removal of germ cells by Sertoli cells. We characterized a de novo t(Y;1)(q12;q12) balanced reciprocal translocation with loss of the heterochromatic region of chromosome 1, that caused unpairing of sex chromosomes followed by meiosis I arrest, apoptotic degeneration of germ cells and azoospermia.
Data confirm that CFTR+5T mutations represent the most common genetic abnormality in CAVD, and suggest that cases of NOAZ may be associated with the 5T allele.
In this work we present a generalised viscoelastic model using distributed-order derivatives. The model consists of two distributed-order elements (distributed springpots) connected in series, as in the Maxwell model. The new model generalises the fractional viscoelastic model presented in [H. Schiessel, A. Blumen, Hierarchical analogues to fractional relaxation equations, Journal of Physics A: Mathematical and General 26 (1993) 5057-50] and allows for a more broad and accurate description of complex fluids when a proper weighting function of the order of the derivatives is chosen. We discuss the connection between classical, fractional, and viscoelastic models of distributed order and highlight the fundamental concepts that support these constitutive equations. We also derive the relaxation modulus, the storage and loss modulus, and the creep compliance for specific weighting functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.