This paper presents a benchmark of supervised Automated Machine Learning (AutoML) tools. Firstly, we analyze the characteristics of eight recent open-source AutoML tools (Auto-Keras, Auto-PyTorch, Auto-Sklearn, AutoGluon, H2O AutoML, rminer, TPOT and TransmogrifAI) and describe twelve popular OpenML datasets that were used in the benchmark (divided into regression, binary and multi-class classification tasks). Then, we perform a comparison study with hundreds of computational experiments based on three scenarios: General Machine Learning (GML), Deep Learning (DL) and XGBoost (XGB). To select the best tool, we used a lexicographic approach, considering first the average prediction score for each task and then the computational effort. The best predictive results were achieved for GML, which were further compared with the best OpenML public results. Overall, the best GML AutoML tools obtained competitive results, outperforming the best OpenML models in five datasets. These results confirm the potential of the general-purpose AutoML tools to fully automate the Machine Learning (ML) algorithm selection and tuning.
Purpose
This perspective study aims to discuss the inclusion of technology in hotels as a key driver of sustainability.
Design/methodology/approach
The paper covers literature and prospects the implementation of smart hotels as a tourism agenda to achieve sustainable development goals.
Findings
Smart hotels can provide a better and more efficient tourism service, in terms of operational tasks and sustainable gains, without losing critical human interaction, which can be a tactic to boost the hotel’s relationship with their customers.
Originality/value
The paper shows how smart hotels can increase business efficiency, and in addition, meet tourist expectations and become more sustainable. In this sense, smart and sustainable hotels deserve to be listed in tourism agenda 2030.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.