This study analyses a novel technique for obtaining a voltage conversion ratio greater than one in a bidirectional seriesresonant DC/DC converter (SRC). The converter works in a discontinuous mode: it transfers energy in packets, but it also accumulates some packets in order to raise the output voltage. This study presents a comprehensive theoretical analysis for the two modes: the step-down mode (common mode) and the novel step-up mode. The converter transfers energy during fixed time intervals (called states), and it is also able to accumulate energy in a novel state called the accumulation state. With this, the circuit can achieve a voltage conversion ratio of up to two. In addition, a design methodology is presented, and it is validated in the design of a high-current bidirectional DC/DC converter for battery applications. The results of the voltage conversion ratio and efficiency measurement are presented along with a comparison with an resonant LLC converter. The converter reaches an efficiency rate of 91% and the voltage conversion ratio varies from 0.8 to 1.22 at maximum power. Using this novel technique, the SRC can now be used in a bidirectional DC/DC converter applied to energy storage devices, such as batteries or supercapacitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.