During the summer months, the northeasterly trade winds impinging on Madeira Island lead to the establishment of a quasi-permanent wind pattern with two tip jets emerging near the western and eastern island tips. These jets respond to subtle changes of the upstream flow with an amplified signal, and a high-resolution simulation of the regional atmospheric flow is found to indicate an intensification, associated with a lowering of the atmospheric boundary layer and a slight realignment of the background flow. These results are validated by observations at Madeira Airport, where the proximity of the East Jet has led to less favourable wind conditions for aircraft operations in the last decade. It is suggested that these trends may be explained by large-scale changes in the structure of the Hadley Cell in the North Atlantic basin.
<p>Land surface plays a fundamental role in the earth system, mediating the water, energy and carbon fluxes between the land and the atmosphere. The land surface physical and biophysical processes act on time scales ranging from sub-daily to decades with relevant impacts from weather forecasts to climate change. However, there are very few available in-situ observations of land surface state and fluxes extending for several years to decades, limiting an integrated validation of the models on the different time scales. The long time series of Cabauw (Netherlands) observations provides a unique opportunity to evaluate land surface processes and their representation in land surface model at time scales ranging from sub-diurnal to interannual. In this study, we take advantage of the uniqueness of Cabauw observational record to investigate the performance of the ECMWF land surface model ECLand for the period 2001-2020 (20 years). Emphasis is given to the summer season and to evaporation and evaporative fraction. An idealized simulation without canopy resistance is performed along with other model configurations with changes to the constraints of canopy resistance (soil moisture availability and atmospheric humidity deficit) and the vertical discretization of the soil layers.</p> <p>Observational uncertainties impact the surface energy budget closure. For example, the model shows a large overestimation of the ground heat flux diurnal cycle. However, part of this can be attributed to observational uncertainties associated with the sinking of the temperature sensors.&#160; The default configuration of ECLand shows an underestimation of latent heat and evaporative fraction, which can be partially attributed to the model&#8217;s representation of canopy resistance. The increased vertical discretization of the soil layers has a neutral impact on the simulated turbulent fluxes, showing an improved representation of near-surface soil temperature. Our results show limitations in the representation of the summer interannual variability of the turbulent fluxes. These are associated with the representation of extreme events (droughts) and are not fully addressed in any of the model configurations tested. These results suggest that other processes relevant to the representation of evaporation in dryness stress conditions need to be further investigated.</p> <p>This work was developed in the framework of the project NextGEMS funded through the European Union&#8217;s Horizon 2020 research and innovation program under the grant agreement number 101003470. Luis Frois was funded by the FCT Grant 2020.08478.BD. The authors also acknowledge the financial support of the Portuguese Funda&#231;&#227;o para a Ci&#234;ncia e a Tecnologia (FCT) I.P./MCTES through national funds (PIDDAC) &#8211; UIDB/50019/2020- IDL.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.