An enzyme charge ladder was used to examine the role of electrostatic interactions involved in biocatalysis at the solid-liquid interface. The reactive substrate consisted of an immobilized bovine serum albumin (BSA) multilayer prepared using a layer-by-layer technique. The zeta potential of the BSA substrate and each enzyme variant was measured to determine the absolute charge in solution. Enzyme adsorption and the rate of substrate surface hydrolysis were monitored for the enzyme charge ladder series to provide information regarding the strength of the enzyme-substrate interaction and the rate of interfacial biocatalysis. First, each variant of the charge ladder was examined at pH 8 for various solution ionic strengths. We found that for positively charged variants the adsorption increased with the magnitude of the charge until the surface became saturated. For higher ionic strength solutions, a greater positive enzyme charge was required to induce adsorption. Interestingly, the maximum catalytic rate was not achieved at enzyme saturation but at an invariable intermediate level of adsorption for each ionic strength value. Furthermore, the maximum achievable reaction rate for the charge ladder was larger for higher ionic strength values. We propose that diffusion plays an important role in interfacial biocatalysis, and for strong enzyme-substrate interaction, the rate of diffusion is reduced, leading to a decrease in the overall reaction rate. We investigated the effect of substrate charge by varying the solution pH from 6.1 to 8.7 and by examining multiple ionic strength values for each pH. The same intermediate level of adsorption was found to maximize the overall reaction rate. However, the ionic strength response of the maximum achievable rate was clearly dependent on the pH of the experiment. We propose that this observation is not a direct effect of pH but is caused by the change in substrate surface charge induced by changing the pH. To prove this hypothesis, BSA substrates were chemically modified to reduce the magnitude of the negative charge at pH 8. Chemical modification was accomplished by the amidation of aspartic and glutamic acids to asparagine and glutamine. The ionic strength response of the chemically modified substrate was considerably different than that for the native BSA substrate at an identical pH, consistent with the trend based on substrate surface charge. Consequently, for substrates with a low net surface charge, the maximum achievable catalytic rate of the charge ladder was relatively independent of the solution ionic strength over the range examined; however, at high net substrate surface charge, the maximum rate showed a considerable ionic strength dependence.
A novel in-situ streaming-potential optical reflectometry apparatus (SPOR) was constructed and utilized to probe the molecular architecture of aqueous adsorbates on a negatively charged silica surface. By combining optical reflectometry and electrokinetic streaming potentials, we measure simultaneously the adsorption density, gamma, and zeta potential, zeta, in a rectangular flow cell constructed with one transparent wall. Both dynamic and equilibrium measurements are possible, allowing the study of sorption kinetics and reversibility. Using SPOR, we investigate the adsorption of a classic nonionic surfactant (pentaethylene glycol monododecyl ether, C12E5), a simple cationic surfactant (hexadecyl trimethylammonium bromide, CTAB) of opposite charge to that of the substrate surface, and two cationic polyelectrolytes (poly(2-(dimethylamino)ethyl methacrylate), PDAEMA; (poly(propyl methacrylate) trimethylammonium chloride, MAPTAC). For the polyethylene oxide nonionic surfactant, bilayer adsorption is established above the critical micelle concentration (cmc) both from the adsorption amounts and from the interpretation of the observed zeta potentials. Near adsorption saturation, CTAB also forms bilayer structures on silica. Here, however, we observe a strong charge reversal of the surface. The SPOR data, along with Gouy-Chapman theory, permit assessment of the net ionization fraction of the CTAB bilayer at 10% so that most of the adsorbed CTAB molecules are counterion complexed. The adsorption of both C12E5 and CTAB is reversible. The adsorption of the cationic polymers, however, is completely irreversible to a solvent wash. As with CTAB, both PDAEMA and MAPTAC demonstrate strong charge reversal. For the polyelectrolyte molecules, however, the adsorbed layer is thin and flat. Here also, a Gouy-Chapman analysis shows that less than 20% of the adsorbed layer is ionized. Furthermore, the amount of charge reversal is inversely proportional to the Debye length in agreement with available theory. SPOR provides a new tool for elucidating aqueous adsorbate molecular structure at solid surfaces.
Surface plasmon resonance and surface plasmon fluorescence spectroscopy in combination have the potential to distinguish multicomponent surface processes. However, surface intensity variations from resonance angle shifts lead to a nonlinear response in the fluorescence intensity. We report a method to account for surface intensity variations using the experimentally measured relationship between fluorescence and reflectivity. We apply this method to monitor protease adsorption and proteolytic substrate degradation simultaneously. Multilayer protein substrates are prepared for these degradation studies using a layer-by-layer technique.
This study examines the influence of electrostatic interactions on enzyme surface diffusion and the contribution of diffusion to interfacial biocatalysis. Surface diffusion, adsorption, and reaction were investigated on an immobilized bovine serum albumin (BSA) multilayer substrate over a range of solution ionic strength values. Interfacial charge of the enzyme and substrate surface was maintained by performing the measurements at a fixed pH; therefore, electrostatic interactions were manipulated by changing the ionic strength. The interfacial processes were investigated using a combination of techniques: fluorescence recovery after photobleaching, surface plasmon resonance, and surface plasmon fluorescence spectroscopy. We used an enzyme charge ladder with a net charge ranging from -2 to +4 with respect to the parent to systematically probe the contribution of electrostatics in interfacial enzyme biocatalysis on a charged substrate. The correlation between reaction rate and adsorption was determined for each charge variant within the ladder, each of which displayed a maximum rate at an intermediate surface concentration. Both the maximum reaction rate and adsorption value at which this maximum rate occurs increased in magnitude for the more positive variants. In addition, the specific enzyme activity increased as the level of adsorption decreased, and for the lowest adsorption values, the specific enzyme activity was enhanced compared to the trend at higher surface concentrations. At a fixed level of adsorption, the specific enzyme activity increased with positive enzyme charge; however, this effect offers diminishing returns as the enzyme becomes more highly charged. We examined the effect of electrostatic interactions on surface diffusion. As the binding affinity was reduced by increasing the solution ionic strength, thus weakening electrostatic interaction, the rate of surface diffusion increased considerably. The enhancement in specific activity achieved at the lowest adsorption values is explained by the substantial rise in surface diffusion at high ionic strength due to decreased interactions with the surface. Overall, knowledge of the electrostatic interactions can be used to control surface parameters such as surface concentration and surface diffusion, which intimately correlate with surface biocatalysis. We propose that the maximum reaction rate results from a balance between adsorption and surface diffusion. The above finding suggests enzyme engineering and process design strategies for improving interfacial biocatalysis in industrial, pharmaceutical, and food applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.