Group decision making has been widely studied since group decision making processes are very common in many fields. Formal representation of the experts' opinions, aggregation of assessments or selection of the best alternatives have been some of main areas addressed by scientists and researchers. In this paper, we focus on another promising area, the study of group decision making processes from the concept of influence and social networks. In order to do so, we present a novel model that gathers the experts' initial opinions and provides a framework to represent the influence of a given expert over the other(s). With this proposal it is feasible to estimate both the evolution of the group decision making process and the final solution before carrying out the group discussion process and consequently foreseeing possible actions.
Recommendation systems are a clear example of an e-service that helps the users to find the most suitable products they are looking for, according to their preferences, among a vast quantity of information. These preferences are usually related to human perceptions because the customers express their needs, taste, and so forth to find a suitable product. The perceptions are better modeled by means of linguistic information due to the uncertainty involved in this type of information. In this article, we propose a content-based recommendation model that will offer a more flexible context to improve the final recommendations where the preferences provided by the sources will be modeled by means of linguistic variables assessed in different linguistic term sets. The proposal consists of offering a multigranular linguistic context for expressing the preferences instead of forcing users to use a unique scale. Then the content-based recommendation model will look for the most suitable product~s!, comparing them with the customer~s! information according to its resemblance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.