The experimental results of seven full-scale thin RC shear walls subjected to cycling loading are presented. The objective of these experiments is to evaluate the use of electro-welded wire mesh as the main reinforcement instead of a conventional reinforcement. Six walls are equipped with the electro-welded wire mesh, which is made of a non-ductile material, and one wall is reinforced with conventional bars, which are made of a ductile material. A single layer of main reinforcement is used in both directions. The edges of all walls are reinforced with conventional bars. These walls are widely used in low-and mid-rise buildings in central Peru, especially in Lima City. The structural behaviors are examined in terms of strength, stiffness, dissipated energy, and equivalent viscous damping. Finally, the "Three-parameter Park hysteretic model" is calibrated in order to reproduce the behaviors of the thin walls reinforced with the conventional reinforcement and electro welded-wire mesh. The parameters are applied to the results of the other walls reinforced by the electro-welded wire mesh. The results of numerical simulations are in good agreement with experimental results.
Even though detailed building inventory data are necessary for estimating earthquake damage reliably, most developing countries do not have sufficient data for such estimations. This necessitates a way for finding building distribution and feature easily. In this study for estimating the number of households in all building categories of different structures or floor numbers in Lima, Peru, where a great earthquake is expected, we propose an estimation method based on existing GIS data from a census, satellite imagery, and building data from field surveys, and apply it to estimate the entire area of Lima for create building inventory data. Building fragility functions were used to calculate a severe damage ratio of buildings due to the expected earthquake. The rate was multiplied by created building inventory data to estimate the number of households in damaged buildings. Furthermore we clarified damage reduction by retrofitting for low earthquake-resistant buildings.
The experimental results of four full-scale confined masonry (CM) walls subjected to cycling loading are presented. These structural elements are widely used in low-and mid-rise buildings in Peru to take the vertical and lateral loads. The objective of these experiments was to evaluate the cyclic behavior of CM walls constructed with handmade bricks and mortar.The brick units used in the walls were made of clay, and they were considered to be solid components. In the experiment, the dimensions of all the walls were kept constant in all specimens, but the reinforcement ratios of the confining elements (bond beam and tie-columns) were changed. The structural behaviors were examined in terms of the strength, lateral stiffness, dissipated energy, and equivalent viscous damping. Finally, an equivalent macro-model based on an equivalent strut approach with a smooth hysteretic model was calibrated and validated in order to reproduce the behaviors of the CM walls. For this purpose, we used a genetic algorithm (GA) that considered the experimental results of a CM wall. The parameters were applied to the results of the other CM walls to evaluate their applicability.The results of numerical simulations showed good agreement with the experimental results.
The actual behavior of thin RC wall high-rise buildings during an earthquake in Lima, Peru, and the associated seismic loss is unknown. This type of building was assessed done using analytical fragility functions. The numerical model was based on full-scale tests done in Lima, Peru. Nonlinear dynamic response analysis was performed using records simulated for Lima. The damage ratio was estimated for four damage states and fragility functions were obtained assuming that the damage ratio followed log-normal distributions. Seismic performance was evaluated by considering the probability of different damage states for three seismic hazard levels. It was found that highrise buildings present a low probability of collapse in severe earthquakes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.