Background and objective Dynamic muscle fascicle length measurements through B-mode ultrasound have become popular for the non-invasive physiological insights they provide regarding musculoskeletal structure-function. However, current practices typically require time consuming post-processing to track muscle length changes from B-mode images. A real-time measurement tool would not only save processing time but would also help pave the way toward closed-loop applications based on feedback signals driven by in vivo muscle length change patterns. In this paper, we benchmark an approach that combines traditional machine learning (ML) models with B-mode ultrasound recordings to obtain muscle fascicle length changes in real-time. To gauge the utility of this framework for ‘in-the-loop’ applications, we evaluate accuracy of the extracted muscle length change signals against time-series’ derived from a standard, post-hoc automated tracking algorithm. Methods We collected B-mode ultrasound data from the soleus muscle of six participants performing five defined ankle motion tasks: (a) seated, constrained ankle plantarflexion, (b) seated, free ankle dorsi/plantarflexion, (c) weight-bearing, calf raises (d) walking, and then a (e) mix. We trained machine learning (ML) models by pairing muscle fascicle lengths obtained from standardized automated tracking software (UltraTrack) with the respective B-mode ultrasound image input to the tracker, frame-by-frame. Then we conducted hyperparameter optimizations for five different ML models using a grid search to find the best performing parameters for a combination of high correlation and low RMSE between ML and UltraTrack processed muscle fascicle length trajectories. Finally, using the global best model/hyperparameter settings, we comprehensively evaluated training-testing outcomes within subject (i.e., train and test on same subject), cross subject (i.e., train on one subject, test on another) and within/direct cross task (i.e., train and test on same subject, but different task). Results Support vector machine (SVM) was the best performing model with an average r = 0.70 ±0.34 and average RMSE = 2.86 ±2.55 mm across all direct training conditions and average r = 0.65 ±0.35 and average RMSE = 3.28 ±2.64 mm when optimized for all cross-participant conditions. Comparisons between ML vs. UltraTrack (i.e., ground truth) tracked muscle fascicle length versus time data indicated that ML tracked images reliably capture the salient qualitative features in ground truth length change data, even when correlation values are on the lower end. Furthermore, in the direct training, calf raises condition, which is most comparable to previous studies validating automated tracking performance during isolated contractions on a dynamometer, our ML approach yielded 0.90 average correlation, in line with other accepted tracking methods in the field. Conclusions By combining B-mode ultrasound and classical ML models, we demonstrate it is possible to achieve real-time tracking of human soleus muscle fascicles across a number of functionally relevant contractile conditions. This novel sensing modality paves the way for muscle physiology in-the-loop applications that could be used to modify gait via biofeedback or unlock novel wearable device control techniques that could enable restored or augmented locomotion performance.
Background and objectiveDynamic muscle fascicle length measurements through B-mode ultrasound have become popular for the non-invasive physiological insights they provide regarding musculoskeletal structure-function. However, current practices typically require time consuming post-processing to track muscle length changes from B-mode images. A real-time measurement tool would not only save processing time but would also help pave the way toward closed-loop applications based on feedback signals driven by in vivo muscle length change patterns. In this paper, we benchmark an approach that combines traditional machine learning (ML) models with B-mode ultrasound recordings to obtain muscle fascicle length changes in real-time. To gauge the utility of this framework for ‘in-the-loop’ applications, we evaluate accuracy of the extracted muscle length change signals against time-series’ derived from a standard, post-hoc automated tracking algorithm.MethodsWe collected B-mode ultrasound data from the soleus muscle of six participants performing five defined ankle motion tasks: (a) seated, constrained ankle plantarflexion, (b) seated, free ankle dorsi/plantarflexion, (c) weight-bearing, calf raises (d) walking, and then a (e) mix. We trained machine learning (ML) models by pairing muscle fascicle lengths obtained from standardized automated tracking software (UltraTrack) with the respective B-mode ultrasound image input to the tracker, frame-by-frame. Then we conducted hyperparameter optimizations for five different ML models using a grid search to find the best performing parameters for a combination of high correlation and low RMSE between ML and UltraTrack processed muscle fascicle length trajectories. Finally, using the global best model/hyperparameter settings, we comprehensively evaluated training-testing outcomes within subject (i.e., train and test on same subject), cross subject (i.e., train on one subject, test on another) and within/direct cross task (i.e., train and test on same subject, but different task).ResultsSupport vector machine (SVM) was the best performing model with an average r = 0.70 ±0.34 and average RMSE = 2.86 ±2.55 mm across all direct training conditions and average r = 0.65 ±0.35 and average RMSE = 3.28 ±2.64 mm when optimized for all cross-participant conditions. Comparisons between ML vs. UltraTrack (i.e., ground truth) tracked muscle fascicle length versus time data indicated that ML tracked images reliably capture the salient qualitative features in ground truth length change data, even when correlation values are on the lower end. Furthermore, in the direct training, calf raises condition, which is most comparable to previous studies validating automated tracking performance during isolated contractions on a dynamometer, our ML approach yielded 0.90 average correlation, in line with other accepted tracking methods in the field.ConclusionsBy combining B-mode ultrasound and classical ML models, we demonstrate it is possible to achieve real-time tracking of human soleus muscle fascicles across a number of functionally relevant contractile conditions. This novel sensing modality paves the way for muscle physiology in-the-loop applications that could be used to modify gait via biofeedback or unlock novel wearable device control techniques that could enable restored or augmented locomotion performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.