Using neonicotinoid insecticides as seed treatments is a common practice in field crop production. Exposure of nontarget organisms to neonicotinoids present in various environmental matrices is debated. In the present study, concentrations of neonicotinoid residues were measured in the top 5 cm of soil and overlying soil surface dust before planting in 25 commercial fields with a history of neonicotinoid seed treatment use in southwestern Ontario in 2013 and 2014 using liquid chromatography-electrospray ionization tandem mass spectrometry. The mean total concentrations were 3.05 ng/g and 47.84 ng/g in 2013 and 5.59 ng/g and 71.17 ng/g in 2014 for parent soil and soil surface dust, respectively. When surface and parent soil residues were compared the mean concentration in surface dust was 15.6-fold and 12.7-fold higher than that in parent soil in 2013 and 2014, respectively. Pooled over years, the surface dust to parent soil ratio was 13.7, with mean concentrations of 4.36 ng/g and 59.86 ng/g for parent soil and surface dust, respectively. The present study's results will contribute important knowledge about the role these residues may play in the overall risk assessment currently under way for the source, transport, and impact of neonicotinoid insecticide residues in a maize ecosystem.
Neonicotinoid residues escaping in vacuum-planter exhaust during maize planting were measured in 25 fields in southwestern Ontario in 2013-2014 using filter bags to collect planter exhaust dust and horizontal and vertical sticky traps to collect planter operation-generated dust. Atrazine residues were used to differentiate between neonicotinoid residues originating from seed or from disturbed soil. Recovery rates of seed-applied neonicotinoids in exhaust were 0.014 and 0.365% in 2013 and 2014, respectively, calculated on the basis of neonicotinoid concentrations in preplant soil and seed application rates. Neonicotinoid exhaust emission rates were 0.0036 and 0.1104 g/ha for 2013 and 2014, respectively, with 99.9472 and 99.7820% originating from treated seed in 2013 and 2014, respectively, calculated on the basis of the atrazine marker. Rates of recovery of seed-applied neonicotinoid residues by exhaust filter bags were 0.015 and 0.437% for 2013 and 2014, respectively. Neonicotinoid residues captured on horizontal and vertical traps were 1.10 ng/cm2 (0.1104 g/ha) and 1.45 ng/cm2 (0.0029 g/ha), respectively, with 92.31 and 93.03% originating from treated seed, respectively, representing 0.3896% of the original active ingredient applied to the seed planted. Exposure to pollinators can be best reduced by strategies to keep active ingredient on the seed, below the soil surface, and in the field where applied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.