Summary• Mountain plants are particularly sensitive to climate warming because snowmelt timing exerts a direct control on their reproduction. Current warming is leading to earlier snowmelt dates and longer snow-free periods. Our hypothesis is that highmountain Mediterranean plants are not able to take advantage of a lengthened snow-free period because this leads to longer drought that truncates the growing season. However, reproductive timing may somewhat mitigate these negative effects through temporal shifts.• We assessed the effects of flowering phenology on the reproductive success of Silene ciliata , a Mediterranean high-mountain plant, across an altitudinal gradient during two climatically contrasting years.• The species showed a late-flowering pattern hampering the use of snowmelt water. Plant fitness was largely explained by the elapsed time from snowmelt to onset of flowering, suggesting a selective pressure towards early flowering caused by soil moisture depletion. The proportion of flowering plants decreased at the lowest population, especially in the drier year. Plants produced more flowers, fruits and seeds at the highest population and in the mild year.• Our results indicate that water deficit in dry years could threaten the lowland populations of this mountainous species, while high-altitude environments are more stable over time.
Background and Aims Germination and seedling establishment, which are critical stages in the regeneration process of plant populations, may be subjected to natural selection and adaptive evolution. The aims of this work were to assess the main limitations on offspring performance of Silene ciliata, a high mountain Mediterranean plant, and to test whether local adaptation at small spatial scales has a significant effect on the success of establishment. † Methods Reciprocal sowing experiments were carried out among three populations of the species to test for evidence of local adaptation on seedling emergence, survival and size. Studied populations were located at the southernmost margin of the species' range, along the local elevation gradient that leads to a drought stress gradient. † Key Results Drought stress in summer was the main cause of seedling mortality even though germination mainly occurred immediately after snowmelt to make the best use of soil moisture. The results support the hypothesis that species perform better at the centre of their altitudinal range than at the boundaries. Evidence was also found of local adaptation in seedling survival and growth along the whole gradient. † Conclusions The local adaptation acting on seedling emergence and survival favours the persistence of remnant populations on the altitudinal and latitudinal margins of mountain species. In a global warming context, such processes may help to counteract the contraction of this species' ranges and the consequent loss of habitat area.
The germination response of 20 species from high altitude Mediterranean climates, most of them rare endemics, was studied. Our main goal was to model the germination response of a complete set of Iberian high mountain species. The effect of temperature and other parameters, such as spatial and temporal short gradients, on germination were also evaluated. Some seed features (mass and size) were also related to the germination response. Finally, we tested the effect of cold-wet stratification pretreatment when germination was low under natural conditions. Seeds were collected at four locations from 1,900 to 2,400 m a.s.l. in the Sierra de Guadarrama (Spanish Central Range) over two consecutive growing seasons (2001)(2002) and submitted to different temperatures and a constant photoperiod of 16 h light/8 h darkness. Most plants readily germinate without treatment, reaching an optimum at relatively high temperatures in contrast to lowland Mediterranean species. Seeds seem to be physiologically prepared for rapid germination even though these plants usually face very intense summer droughts after ripening and dispersal. Germination was also highly variable among altitudes, populations and years, but results were inconsistent among species. Such flexibility could be interpreted as an efficient survival strategy for species growing under unpredictable environments, such as the Mediterranean climate. Finally cold-wet stratification increased germination capacity in five of nine dormant species, as widely reported for many arctic, boreal and alpine species. In conclusion, high mountain Mediterranean species do not differ from alpine species except that a relatively high number of species are ready to germinate without any treatment.
Under climate warming, plants will undergo novel selective pressures to adjust reproductive timing. Adjustment between reproductive phenology and environment is expected to be higher in arctic and alpine habitats because the growing season is considerably short. As early-and late-flowering species reproduce under very different environmental conditions, selective pressures on flowering phenology and potential effects of climate change are likely to differ between them. However, there is no agreement on the magnitude of the benefits and costs of early-vs. late-flowering species under a global warming scenario. In spite of its relevance, phenotypic selection on flowering phenology has rarely been explored in alpine plants and never in Mediterranean high mountain species, where selective pressures are very different due to the summer drought imposed over the short growth season. We hypothesized that late-flowering plants in Mediterranean mountains should present stronger selective pressures towards early onset of reproduction than early-flowering species, because less water is available in the soil as growing season progresses. We performed selection analyses on flowering onset and duration in two high mountain species of contrasting phenology. Since phenotypic selection can be highly context-dependent, we studied several populations of each species for 2 years, covering their local altitudinal ranges and their different microhabitats. Surrogates of biotic selective agents, like fruitset for pollinators and flower and fruit loss for flower and seed predators, were included in the analysis. Differences between the early-and the late-flowering species were less than expected. A consistent negative correlational selection of flowering onset and duration was found affecting plant fitness, i.e., plants that bloomed earlier flowered for longer periods improving plant fitness. Nevertheless, the late-flowering species may Electronic supplementary material The online version of this article (experience higher risks under climate warming because in extremely warm and dry years the earlier season does not bring about a longer flowering duration due to summer drought.
Nursery pollination in Caryophyllaceae species by Hadena and Perizoma moths has been extensively described in the last few decades. Evidence across multiple pairs of species shows that such pollination systems constitute relatively specialized interactions, shifting between parasitism and mutualism depending on the presence of effective co-pollinators.In this work, we describe a new specific Silene-Hadena interaction, the Silene ciliata ÁHadena consparcatoides system. Although S. ciliata presents a typical nocturnal pollination syndrome, diurnal flower visitors have also been recorded, which motivated us to evaluate the costs and benefits of this nursery moth pollination to the plant. We experimentally induced two pollination regimes at non-overlapping day-night periods in a natural population of S. ciliata , and compared their effects on plant reproductive success from flower to seedling stages. Flower scent composition of S. ciliata and antennal responses of H. consparcatoides to this scent were recorded to evaluate the specificity of olfactory signals in this interaction system.In accordance with its nocturnal pollination syndrome, S. ciliata emitted a greater amount of flower scent compounds during the night. Some of the predominant scent compounds, such as benzaldehyde, benzyl acetate and methyl salicylate elicited signals in the antennae of H. consparcatoides . Diurnal pollination produced more fruits per flower than nocturnal pollination, but the latter produced higher brood size resulting in similar overall fecundity. However, seeds generated from diurnal pollination were heavier and germinated better. We conclude that despite its nocturnal pollination syndrome, S. ciliata achieved similar reproductive success and higher offspring vigour under the diurnal pollinator regime. Although H. consparcatoides is specialized in S. ciliata , its shortage or absence would not jeopardize the reproductive success of its host plant. On the contrary, the seed predation exerted by this nursery pollinator shifts the interaction towards parasitism.The evolution and maintenance of specialized pollination systems constitute a major paradigm in plant ecology. Considering that a plant species may receive visits by a large number of animal species, Stebbins (1970) hypothesized that a plant species should evolve to maximize the visits of its most effective pollinator. Since then, in an attempt to understand the selective forces that pollinators exert on plants to develop specialized pollination syndromes, numerous studies have evaluated the effects of different pollinator species and pollinator assemblages (e.g. diurnal vs nocturnal) on plant reproductive success (Morse and Fritz 1983,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.