Burkholderia xenovorans LB400 (LB400), a well studied, effective polychlorinated biphenyl-degrader, has one of the two largest known bacterial genomes and is the first nonpathogenic Burkholderia isolate sequenced. From an evolutionary perspective, we find significant differences in functional specialization between the three replicons of LB400, as well as a more relaxed selective pressure for genes located on the two smaller vs. the largest replicon. High genomic plasticity, diversity, and specialization within the Burkholderia genus are exemplified by the conservation of only 44% of the genes between LB400 and Burkholderia cepacia complex strain 383. Even among four B. xenovorans strains, genome size varies from 7.4 to 9.73 Mbp. The latter is largely explained by our findings that >20% of the LB400 sequence was recently acquired by means of lateral gene transfer. Although a range of genetic factors associated with in vivo survival and intercellular interactions are present, these genetic factors are likely related to niche breadth rather than determinants of pathogenicity. The presence of at least eleven ''central aromatic'' and twenty ''peripheral aromatic'' pathways in LB400, among the highest in any sequenced bacterial genome, supports this hypothesis. Finally, in addition to the experimentally observed redundancy in benzoate degradation and formaldehyde oxidation pathways, the fact that 17.6% of proteins have a better LB400 paralog than an ortholog in a different genome highlights the importance of gene duplication and repeated acquirement, which, coupled with their divergence, raises questions regarding the role of paralogs and potential functional redundancies in large-genome microbes.genomics ͉ niche adaptation ͉ evolution ͉ biodegradation ͉ redundancy
Circadian clock performance during winter dormancy has been investigated in chestnut by using as marker genes CsTOC1 and CsLHY, which are homologous to essential components of the central circadian oscillator in Arabidopsis. During vegetative growth, mRNA levels of these two genes in chestnut seedlings and adult plants cycled daily, as expected. However, during winter dormancy, CsTOC1 and CsLHY mRNA levels were high and did not oscillate, indicating that the circadian clock was altered. A similar disruption was induced by chilling chestnut seedlings (to 4°C). Normal cycling resumed when endodormant or cold-treated plants were returned to 22°C. The behavior of CsTOC1 and CsLHY during a cold response reveals a relevant aspect of clock regulation not yet encountered in Arabidopsis.chilling ͉ winter dormancy ͉ ecodormancy ͉ cold response W inter dormancy is an important adaptive strategy that enables plants to persist during periods of stressful environmental conditions (1). Dormancy parameters are key determinants in woody plants in agriculture and forestry. Dormancy determines to what degree fruit crops will survive winter and early spring without shoot and flower bud damage, and, in long-lived forest species, the length of rest limits the growing season and thus affects wood production and quality. The onset of winter deep dormancy (endodormancy) is preceded by a stage of ecodormancy. Endodormancy is caused by plant endogenous factors, and, once established,
Many plant proteins, particularly those found in foods and pollen, are known to act as sensitizing agents in humans upon repeated exposure. Among the cereal flour proteins involved in asthmatic reactions, those members of the alpha-amylase inhibitor family which are glycosylated, polypeptides, BMAI-1, BTAI-CMb*, and WTAI-CM16* are particularly reactive both in vivo and in vitro. We show here that these major glycoprotein allergens carry a single asparagine-linked complex glycan that contains both beta 1-->2 xylose and alpha 1-->3 fucose. Evidence is presented that the xylosyl residue and, to a lesser extent, the fucosyl residue are key IgE-binding epitopes and largely responsible for the allergenicity of these and unrelated proteins from plants and insects. Our results suggest that the involvement of xylose- and fucose-containing complex glycans in allergenic responses may have been underestimated previously; these glycans provide a structural basis to help explain the cross-reactivities often observed between pollen, vegetable food, and insect allergens.
A small heat-shock protein (sHSP) that shows molecular chaperone activity in vitro was recently purified from mature chestnut (Castanea sativa) cotyledons. This protein, renamed here as CsHSP17.5, belongs to cytosolic class I, as revealed by cDNA sequencing and immunoelectron microscopy. Recombinant CsHSP17.5 was overexpressed in Escherichia coli to study its possible function under stress conditions. Upon transfer from 37°C to 50°C, a temperature known to cause cell autolysis, those cells that accumulated CsHSP17.5 showed improved viability compared with control cultures. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of cell lysates suggested that such a protective effect in vivo is due to the ability of recombinant sHSP to maintain soluble cytosolic proteins in their native conformation, with little substrate specificity. To test the recent hypothesis that sHSPs may be involved in protection against cold stress, we also studied the viability of recombinant cells at 4°C. Unlike the major heat-induced chaperone, GroEL/ES, the chestnut sHSP significantly enhanced cell survivability at this temperature. CsHSP17.5 thus represents an example of a HSP capable of protecting cells against both thermal extremes. Consistent with these findings, high-level induction of homologous transcripts was observed in vegetative tissues of chestnut plantlets exposed to either type of thermal stress but not salt stress.
A 16 kDa protein, designated CM16*, which strongly binds IgE from baker's-asthma patients has been identified as a glycosylated form of the previously reported WTAI-CM16, which is a subunit of the wheat tetrameric alpha-amylase inhibitor. A glycosylated form (CMb*) of BTAI-CMb, the equivalent inhibitor subunit from barley, has been also found to have significantly enhanced IgE-binding capacity. In all, 14 purified members of the alpha-amylase/trypsin-inhibitor family showed very different IgE-binding capacities when tested by a dot-blot assay. The glycosylated components CM16*, CMb* and the previously described non-glycosylated 14.5 kDa allergen from barley (renamed BMAI-1) were found to be the strongest allergens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.