Alexander disease is a progressive, usually fatal neurological disorder defined by the widespread and abundant presence in astrocytes of protein aggregates called Rosenthal fibers. The disease most often occurs in infants younger than 2 years and has been labeled a leukodystrophy because of an accompanying severe myelin deficit in the frontal lobes. Later onset forms have also been recognized based on the presence of abundant Rosenthal fibers. In these cases, clinical signs and pathology can be quite different from the infantile form, raising the question whether they share the same underlying cause. Recently, we and others have found pathogenic, de novo missense mutations in the glial fibrillary acidic protein gene in most infantile patients examined and in a few later onset patients. To obtain further information about the role of glial fibrillary acidic protein mutations in Alexander disease, we analyzed 41 new patients and another 3 previously described clinically, including 18 later onset patients. Our results show that dominant missense glial fibrillary acidic protein mutations account for nearly all forms of this disorder. They also significantly expand the catalog of responsible mutations, verify the value of magnetic resonance imaging diagnosis, indicate an unexpected male predominance for the juvenile form, and provide insights into phenotype-genotype relations.
We report on ten individuals with a fatal infantile encephalopathy and/or pulmonary hypertension, leading to death before the age of 15 months. Hyperglycinemia and lactic acidosis were common findings. Glycine cleavage system and pyruvate dehydrogenase complex (PDHC) activities were low. Homozygosity mapping revealed a perfectly overlapping homozygous region of 1.24 Mb corresponding to chromosome 2 and led to the identification of a homozygous missense mutation (c.622G > T) in NFU1, which encodes a conserved protein suggested to participate in Fe-S cluster biogenesis. Nine individuals were homozygous for this mutation, whereas one was compound heterozygous for this and a splice-site (c.545 + 5G > A) mutation. The biochemical phenotype suggested an impaired activity of the Fe-S enzyme lipoic acid synthase (LAS). Direct measurement of protein-bound lipoic acid in individual tissues indeed showed marked decreases. Upon depletion of NFU1 by RNA interference in human cell culture, LAS and, in turn, PDHC activities were largely diminished. In addition, the amount of succinate dehydrogenase, but no other Fe-S proteins, was decreased. In contrast, depletion of the general Fe-S scaffold protein ISCU severely affected assembly of all tested Fe-S proteins, suggesting that NFU1 performs a specific function in mitochondrial Fe-S cluster maturation. Similar biochemical effects were observed in Saccharomyces cerevisiae upon deletion of NFU1, resulting in lower lipoylation and SDH activity. Importantly, yeast Nfu1 protein carrying the individuals' missense mutation was functionally impaired. We conclude that NFU1 functions as a late-acting maturation factor for a subset of mitochondrial Fe-S proteins.
Common, clinical findings of SRD, aside from oculogyric crises and diurnal fluctuation, are nonspecific and mimic CP with hypotonia or dystonia. Patients usually improve dramatically with treatment. Consequently, we recommend consideration of SRD not only in patients with levodopa-responsive motor disorders, but also in patients with developmental delays with axial hypotonia, and patients with unexplained or atypical presumed CP. Biochemical investigation of cerebrospinal fluid is the preferred method of initial investigation. Early diagnosis and treatment are recommended to prevent ongoing brain dysfunction.
Stroke-like episodes (SLE) occur in phosphomannomutase deficiency (PMM2-CDG), and may complicate the course of channelopathies related to Familial Hemiplegic Migraine (FHM) caused by mutations in CACNA1A (encoding CaV2.1 channel). The underlying pathomechanisms are unknown. We analyze clinical variables to detect risk factors for SLE in a series of 43 PMM2-CDG patients. We explore the hypothesis of abnormal CaV2.1 function due to aberrant N-glycosylation as a potential novel pathomechanism of SLE and ataxia in PMM2-CDG by using whole-cell patch-clamp, N-glycosylation blockade and mutagenesis. Nine SLE were identified. Neuroimages showed no signs of stroke. Comparison of characteristics between SLE positive versus negative patients’ group showed no differences. Acute and chronic phenotypes of patients with PMM2-CDG or CACNA1A channelopathies show similarities. Hypoglycosylation of both CaV2.1 subunits (α1A and α2α) induced gain-of-function effects on channel gating that mirrored those reported for pathogenic CACNA1A mutations linked to FHM and ataxia. Unoccupied N-glycosylation site N283 at α1A contributes to a gain-of-function by lessening CaV2.1 inactivation. Hypoglycosylation of the α2δ subunit also participates in the gain-of-function effect by promoting voltage-dependent opening of the CaV2.1 channel. CaV2.1 hypoglycosylation may cause ataxia and SLEs in PMM2-CDG patients. Aberrant CaV2.1 N-glycosylation as a novel pathomechanism in PMM2-CDG opens new therapeutic possibilities.
Summary Purpose Pyridoxine‐dependent epilepsy seizure (PDE; OMIM 266100) is a disorder associated with severe seizures that can be controlled pharmacologically with pyridoxine. In the majority of patients with PDE, the disorder is caused by the deficient activity of the enzyme α‐aminoadipic semialdehyde dehydrogenase (antiquitin protein), which is encoded by the ALDH7A1 gene. The aim of this work was the clinical, biochemical, and genetic analysis of 12 unrelated patients, mostly from Spain, in an attempt to provide further valuable data regarding the wide clinical, biochemical, and genetic spectrum of the disease. Methods The disease was confirmed based on the presence of α‐aminoadipic semialdehyde (α‐AASA) in urine measured by liquid chromatography tandem mass spectrometry (LC‐MS/MS) and pipecolic acid (PA) in plasma and/or cerebrospinal fluid (CSF) measured by high performance liquid chromatography (HPLC)/MS/MS and by sequencing analysis of messenger RNA (mRNA) and genomic DNA of ALDH7A1. Key Findings Most of the patients had seizures in the neonatal period, but they responded to vitamin B6 administration. Three patients developed late‐onset seizures, and most patients showed mild‐to‐moderate postnatal developmental delay. All patients had elevated PA and α‐AASA levels, even those who had undergone pyridoxine treatment for several years. The clinical spectrum of our patients is not limited to seizures but many of them show associated neurologic dysfunctions such as muscle tone alterations, irritability, and psychomotor retardation. The mutational spectrum of the present patients included 12 mutations, five already reported (c.500A>G, c.919C>T, c.1429G>C c.1217_1218delAT, and c.1482‐1G>T) and seven novel sequence changes (c.75C>T, c.319G>T, c.554_555delAA, c.757C>T, c.787 + 1G>T, c.1474T>C, c.1093‐?_1620+?). Only one mutation, p.G477R (c.1429G>C), was recurrent; this was detected in four different alleles. Transcriptional profile analysis of one patient's lymphoblasts and ex vivo splicing analysis showed the silent nucleotide change c.75C>T to be a novel splicing mutation creating a new donor splice site inside exon 1. Antisense therapy of the aberrant mRNA splicing in a lymphoblast cell line harboring mutation c.75C>T was successful. Significance The present results broaden our knowledge of PDE, provide information regarding the genetic background of PDE in Spain, afford data of use when making molecular‐based prenatal diagnosis, and provide a cellular proof‐of concept for antisense therapy application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.