Simultaneous hypothesis tests can fail to provide results that meet logical requirements. For example, if A and B are two statements such that A implies B, there exist tests that, based on the same data, reject B but not A. Such outcomes are generally inconvenient to statisticians (who want to communicate the results to practitioners in a simple fashion) and non-statisticians (confused by conflicting pieces of information). Based on this inconvenience, one might want to use tests that satisfy logical requirements. However, Izbicki and Esteves shows that the only tests that are in accordance with three logical requirements (monotonicity, invertibility and consonance) are trivial tests based on point estimation, which generally lack statistical optimality. As a possible solution to this dilemma, this paper adapts the above logical requirements to agnostic tests, in which one can accept, reject or remain agnostic with respect to a given hypothesis. Each of the logical requirements is characterized in terms of a Bayesian decision theoretic perspective. Contrary to the results obtained for regular hypothesis tests, there exist agnostic tests that satisfy all logical requirements and also perform well statistically. In particular, agnostic tests that fulfill all logical requirements are characterized as region estimator-based tests. Examples of such tests are provided.
Abstract:The main objective of this paper is to find the relation between the adaptive significance level presented here and the sample size. We statisticians know of the inconsistency, or paradox, in the current classical tests of significance that are based on p-value statistics that are compared to the canonical significance levels (10%, 5%, and 1%): "Raise the sample to reject the null hypothesis" is the recommendation of some ill-advised scientists! This paper will show that it is possible to eliminate this problem of significance tests. We present here the beginning of a larger research project. The intention is to extend its use to more complex applications such as survival analysis, reliability tests, and other areas. The main tools used here are the Bayes factor and the extended Neyman-Pearson Lemma.
This paper introduces pragmatic hypotheses and relates this concept to the spiral of scientific evolution. Previous works determined a characterization of logically consistent statistical hypothesis tests and showed that the modal operators obtained from this test can be represented in the hexagon of oppositions. However, despite the importance of precise hypothesis in science, they cannot be accepted by logically consistent tests. Here, we show that this dilemma can be overcome by the use of pragmatic versions of precise hypotheses. These pragmatic versions allow a level of imprecision in the hypothesis that is small relative to other experimental conditions. The introduction of pragmatic hypotheses allows the evolution of scientific theories based on statistical hypothesis testing to be interpreted using the narratological structure of hexagonal spirals, as defined by Pierre Gallais.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.