Novel optical imaging methods, such as Raman microspectroscopy, have been gaining recognition in their ability to obtain noninvasively the distribution of biochemical components of a sample. Raman spectroscopy in combination with optical microscopy provides a label-free method to assess and image cellular processes, without the use of extrinsic fluorescent dyes. The submicrometer resolution of the confocal Raman instrumentation allows us to image cellular organelles on the scale of conventional microscopy. We used the technique to monitor subcellular degradation patterns of two biodegradable nanocarrier systems-poly(epsilon-caprolactone) (PCL) and poly(lactic-co-glycolic acid) (PLGA). Our results suggest that both drug-delivery systems eventually are incorporated into Golgi-associated vesicles of late endosomes. These processes were monitored via the decrease of the molecule-characteristic peaks of PCL and PLGA. As the catabolic pathways proceed, shifts and variations in peak intensities and intensity ratios in the rendered Raman spectra unequivocally delineate their degradation patterns.
Nanotechnology is playing an increasing role in targeted drug delivery into pathological tissues. Drug-loaded pharmaceutical nanocarriers can be delivered into diseased sites by passive targeting (spontaneous accumulation of nanocarriers in the areas with affected vasculature) or by active targeting (via site-specific ligands attached to the surface of drug-loaded nanocarriers). Subsequent level of targeting requires cellular internalization of nanocarriers and their specific association with certain individual cell organelles. The control over intracellular distribution of pharmaceutical nanocarriers requires effective and non-invasive methods of their visualization inside cells. In an attempt to enhance cellular internalization of pharmaceutical nanocarriers and their association with mitochondria specifically, we have prepared three types of cationic liposomes and investigated their intracellular distribution. The analysis was performed using Raman microspectroscopy in combination with optical microscopy, in order to provide morphological information as well as biochemical signatures of the sample. It was demonstrated that the Raman microscopy allows to evaluate the extent of mitochondrial association depending on the liposome composition.
A scanning system for specific absorption rate of ferrofluids with superparamagnetic nanoparticles is presented in this study. The system contains an induction heating device designed and built with a resonant inverter in order to generate magnetic field amplitudes up to 38 mT, over the frequency band 180-525 kHz. Its resonant circuit involves a variable capacitor with 1 nF of capacitance steps to easily select the desired frequency, reaching from 0.3 kHz/nF up to 5 kHz/nF of resolution. The device performance is characterized in order to compare with the theoretical predictions of frequency and amplitude, showing a good agreement with the resonant inverters theory. Additionally, the setup is tested using a synthetic iron oxide with 10 ± 1 nm diameter suspended in liquid glycerol, with concentrations at 1%. Meanwhile, the temperature rise is measured to determine the specific absorption rate and calculate the dissipated power density for each f. This device is a suitable alternative to studying ferrofluids and analyzes the dependence of the power absorption density with the magnetic field intensity and frequency.
In this study, a frequency tuner system is developed for generating variable frequency magnetic fields for magnetic hyperthermia applications. The tuning device contains three specially designed phase lock loop devices that drive a resonant inverter working in the frequency band of 180–525 kHz. This tuner system can be adapted for other resonant inverters employed in the studies of ferrofluids with superparamagnetic nanoparticles. The performance of the whole system is also examined. Our findings were in agreement with the theoretical expectations of phase locking and frequency tuning. The system is tested for samples of a solid magnetic material of cylindrical shape and ferrofluids with differing concentrations of powdered magnetite. The observations indicate significant frequency changes of the magnetic field due to heating of the samples. These frequency variations can be a source of errors, which should not be neglected in experiments determining the specific absorption rate or power dissipated density.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.