LY-CoV1404 is a highly potent, neutralizing, SARS-CoV-2 spike glycoprotein receptor binding domain (RBD)-specific antibody identified from a convalescent COVID-19 patient approximately 60 days after symptom onset. In pseudovirus studies, LY-CoV1404 retains potent neutralizing activity against numerous variants including B.1.1.7, B.1.351, B.1.427/B.1.429, P.1, and B.1.526 and binds to these variants in the presence of their underlying RBD mutations (which include K417N, L452R, E484K, and N501Y). LY-CoV1404 also neutralizes authentic SARS-CoV-2 in two different assays against multiple isolates. The RBD positions comprising the LY-CoV1404 epitope are highly conserved, with the exception of N439 and N501; notably the binding and neutralizing activity of LY-CoV1404 is unaffected by the most common mutations at these positions (N439K and N501Y). The breadth of variant binding, potent neutralizing activity and the relatively conserved epitope suggest that LY-CoV1404 is one in a panel of well-characterized, clinically developable antibodies that could be deployed rapidly to address current and emerging variants. New variant-resistant treatments such as LY-CoV1404 are desperately needed, given that some of the existing therapeutic antibodies are less effective or ineffective against certain variants and the impact of variants on vaccine efficacy is still poorly understood.
The hamster has been previously described as a paroxysmal dystonia model, but our strain is currently recognized as a model of audiogenic seizures (AGS). The original first epileptic hamster appeared spontaneously at the University of Valladolid, where it was known as the GPG:Vall line, and was transferred to the University of Salamanca where a new strain was developed, named GASH:Sal. By testing auditory brainstem responses, the GASH:Sal exhibits elevated auditory thresholds that indicate a hearing impairment. Moreover, amplified fragment length polymorphism analysis distinguished genetic differences between the susceptible GASH:Sal hamster strain and the control Syrian hamsters. The GASH:Sal constitutes an experimental model of reflex epilepsy of audiogenic origin derived from an autosomal recessive disorder. Thus, the GASH:Sal exhibits generalized tonic-clonic seizures, characterized by a short latency period after auditory stimulation, followed by wild running, a convulsive phase, and finally stupor, with origin in the brainstem. The seizure profile of the GASH:Sal is similar to those exhibited by other models of inherited AGS susceptibility, which decreases after six months of age, but the proneness across generations is maintained. The GASH:Sal can be considered a reliable model of audiogenic seizures, suitable to investigate current antiepileptic pharmaceutical treatments as well as novel therapeutic drugs.This article is part of a Special Issue entitled Genetic Models-Epilepsy.
Epilepsy modeling is essential for understanding the basic mechanisms of the epileptic process. The Genetic Audiogenic Seizure Hamster (GASH:Sal) exhibits generalized tonic-clonic seizures of genetic origin in response to sound stimulation and is currently being validated as a reliable model of epilepsy. Here, we performed a pharmacological and neuroethological study using well-known and widely used antiepileptic drugs (AEDs), including phenobarbital (PB), valproic acid (VPA), and levetiracetam (LEV). The intraperitoneal administration of PB (5-20mg/kg) and VPA (100-300mg/kg) produced a dose-dependent decrease in GASH:Sal audiogenic seizure severity scores. The administration of LEV (30-100mg/kg) did not produce a clear effect. Phenobarbital showed a short plasmatic life and had a high antiepileptic effect starting at 10mg/kg that was accompanied by ataxia. Valproic acid acted only at high concentrations and was the AED with the most ataxic effects. Levetiracetam at all doses also produced sedation and ataxia side effects. We conclude that the GASH:Sal is a reliable genetic model of epilepsy suitable to evaluate AEDs.
Epilepsy is a complex neurological disorder characterized by sudden and recurrent seizures, which are caused by various factors, including genetic abnormalities. Several animal models of epilepsy mimic the different symptoms of this disorder. In particular, the genetic audiogenic seizure hamster from Salamanca (GASH/Sal) animals exhibit sound-induced seizures similar to the generalized tonic seizures observed in epileptic patients. However, the genetic alterations underlying the audiogenic seizure susceptibility of the GASH/Sal model remain unknown. In addition, gene variations in the GASH/Sal might have a close resemblance with those described in humans with epilepsy, which is a prerequisite for any new preclinical studies that target genetic abnormalities. Here, we performed whole exome sequencing (WES) in GASH/Sal animals and their corresponding controls to identify and characterize the mutational landscape of the GASH/Sal strain. After filtering the results, moderate-and high-impact variants were validated by Sanger sequencing, assessing the possible impact of the mutations by "in silico" reconstruction of the encoded proteins and analyzing their corresponding biological pathways. Lastly, we quantified gene expression levels by RT-qPCR. In the GASH/Sal model, WES showed the presence of 342 variations, in which 21 were classified as high-impact mutations. After a full bioinformatics analysis to highlight the high quality and reliable variants, the presence of 3 high-impact and 15 moderate-impact variants were identified. Gene expression analysis of the high-impact variants of Asb14 (ankyrin repeat and SOCS Box Containing 14), Msh3 (MutS Homolog 3) and Arh-gef38 (Rho Guanine Nucleotide Exchange Factor 38) genes showed a higher expression in the GASH/Sal than in control hamsters. In silico analysis of the functional consequences indicated that those mutations in the three encoded proteins would have severe functional alterations. By functional analysis of the variants, we detected 44 significantly enriched pathways, including the glutamatergic synapse pathway. The data show three high-impact mutations with a major impact on the function of the proteins encoded by these genes, although no mutation in these three genes has been associated with some type of epilepsy until now. Furthermore, GASH/Sal animals also showed gene variants associated with different types of epilepsy that has been extensively documented, as well as mutations in other genes that PLOS ONE PLOS ONE | https://doi.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.