An exceptional muscle development commonly referred to as 'double-muscled' (Fig. 1) has been seen in several cattle breeds and has attracted considerable attention from beef producers. Double-muscled animals are characterized by an increase in muscle mass of about 20%, due to general skeletal-muscle hyperplasia-that is, an increase in the number of muscle fibers rather than in their individual diameter. Although the hereditary nature of the double-muscled condition was recognized early on, the precise mode of inheritance has remained controversial; monogenic (domainant and recessive), oligogenic and polygenic models have been proposed. In the Belgian Blue cattle breed (BBCB), segregation analysis performed both in experimental crosses and in the outbred population suggested an autosomal recessive inheritance. This was confirmed when the muscular hypertrophy (mh) locus was mapped 3.1 cM from microsatellite TGLA44 on the centromeric end of bovine chromosome 2 (ref. 5). We used a positional candidate approach to demonstrate that a mutation in bovine MSTN, which encodes myostatin, a member of the TGF beta superfamily, is responsible for the double-muscled phenotype. We report an 11-bp deletion in the coding sequence for the bioactive carboxy-terminal domain of the protein causing the muscular hypertrophy observed in Belgian Blue cattle.
We have determined the entire myostatin coding sequence for 32 double-muscled cattle sampled from ten European cattle breeds. Seven DNA sequence polymorphisms were identified, of which five would be predicted to disrupt the function of the protein, one is a conservative amino acid substitution, and one a silent DNA sequence variant. Four additional DNA sequence polymorphisms were identified in myostatin intronic sequences. In all but two breeds, all double-muscled animals were either homozygous or compound heterozygotes for one of the five loss-of-function mutations. The absence of obvious loss-of-function mutations in the coding sequence of the two remaining breeds points either towards additional mutations in unexplored segments of the gene, or towards locus heterogeneity of double-muscling.
Cattle domestication from wild aurochsen was among the most important innovations during the Neolithic agricultural revolution. The available genetic and archaeological evidence points to at least two major sites of domestication in India and in the Near East, where zebu and the taurine breeds would have emerged independently. Under this hypothesis, all present-day European breeds would be descended from cattle domesticated in the Near East and subsequently spread during the diffusion of herding and farming lifestyles. We present here previously undescribed genetic evidence in contrast with this view, based on mtDNA sequences from five Italian aurochsen dated between 7,000 and 17,000 years B.P. and >1,000 modern cattle from 51 breeds. Our data are compatible with local domestication events in Europe and support at least some levels of introgression from the aurochs in Italy. The distribution of genetic variation in modern cattle suggest also that different south European breeds were affected by introductions from northern Africa. If so, the European cattle may represent a more variable and valuable genetic resource than previously realized, and previous simple hypotheses regarding the domestication process and the diffusion of selected breeds should be revised.domestication ͉ Europe ͉ mtDNA ͉ aurochs
Animal domestication was a major step forward in human prehistory, contributing to the emergence of more complex societies. At the time of the Neolithic transition, zebu cattle (Bos indicus) were probably the most abundant and important domestic livestock species in Southern Asia. Although archaeological evidence points toward the domestication of zebu cattle within the Indian subcontinent, the exact geographic origins and phylogenetic history of zebu cattle remains uncertain. Here, we report evidence from 844 zebu mitochondrial DNA (mtDNA) sequences surveyed from 19 Asiatic countries comprising 8 regional groups, which identify 2 distinct mitochondrial haplogroups, termed I1 and I2. The marked increase in nucleotide diversity (P < 0.001) for both the I1 and I2 haplogroups within the northern part of the Indian subcontinent is consistent with an origin for all domestic zebu in this area. For haplogroup I1, genetic diversity was highest within the Indus Valley among the three hypothesized domestication centers (Indus Valley, Ganges, and South India). These data support the Indus Valley as the most likely center of origin for the I1 haplogroup and a primary center of zebu domestication. However, for the I2 haplogroup, a complex pattern of diversity is detected, preventing the unambiguous pinpointing of the exact place of origin for this zebu maternal lineage. Our findings are discussed with respect to the archaeological record for zebu domestication within the Indian subcontinent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.