The concept of Future Networks is based on the premise that current infrastructures require enhanced control, service customization, self-organization and self-management capabilities to meet the new needs in a connected society, especially of mobile users. In order to provide a high-performance mobile system, three main fields must be improved: radio, network, and operation and management. In particular, operation and management capabilities are intended to enable business agility and operational sustainability, where the addition of new services does not imply an excessive increase in capital or operational expenditures. In this context, a set of key-enabled technologies have emerged in order to aid in this field. Concepts such as Software Defined Network (SDN), Network Function Virtualization (NFV) and Self-Organized Networks (SON) are pushing traditional systems towards the next 5G network generation.This paper presents an overview of the current status of these promising technologies and ongoing works to fulfill the operational and management requirements of mobile infrastructures. This work also details the use cases and the challenges, taking into account not only SDN, NFV, cloud computing and SON but also other paradigms.
The development of the Internet of Things (IoT) is closely related to a considerable increase in the number and variety of devices connected to the Internet. Sensors have become a regular component of our environment, as well as smart phones and other devices that continuously collect data about our lives even without our intervention. With such connected devices, a broad range of applications has been developed and deployed, including those dealing with massive volumes of data. In this paper, we introduce a Distributed Data Service (DDS) to collect and process data for IoT environments. One central goal of this DDS is to enable multiple and distinct IoT middleware systems to share common data services from a loosely-coupled provider. In this context, we propose a new specification of functionalities for a DDS and the conception of the corresponding techniques for collecting, filtering and storing data conveniently and efficiently in this environment. Another contribution is a data aggregation component that is proposed to support efficient real-time data querying. To validate its data collecting and querying functionalities and performance, the proposed DDS is evaluated in two case studies regarding a simulated smart home system, the first case devoted to evaluating data collection and aggregation when the DDS is interacting with the UIoT middleware, and the second aimed at comparing the DDS data collection with this same functionality implemented within the Kaa middleware.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.