The aim of this paper is to evaluate the effects of cocoa polyphenols and procyanidins with different degrees of polymerization that are encapsulated in liposome delivery systems on the inhibition of lipid oxidation at pH 3.0 and 5.0. In general, liposomes at pH 3.0 and 5.0 were physically stable in the presence of polyphenols and procyanidins with mean particle sizes of 56.56 ± 12.29 and 77.45 ± 8.67 nm and ζ-potentials of -33.50 ± 3.16 and -20.44 ± 1.98 mV at pH 3.0 and 5.0, respectively. At both pH 3.0 and pH 5.0, all the polyphenols and procyanidins inhibited lipid hydroperoxide and hexanal formation, and antioxidant activities increased with increasing polymer-chain sizes. The greater antioxidant activities of the isolated procyanidins were likely due to their increased metal-chelating capacities, as determined by ferric-reducing-ability (FRAP) assays, and their greater levels of partitioning into the lipids, as determined by their log K values and encapsulation efficiencies. The crude extract had the greatest antioxidant activity, which could be because other antioxidants were present, or combinations of the different polyphenols and procyanidins inhibited lipid oxidation synergistically.
The lipophilization of polar antioxidants such as phenolics is an efficient way to enhance their solubility in apolar media. Thus, in emulsified systems, lipophilized antioxidants are supposed to locate at the lipid/aqueous phase interface and to lead to a better protection of unsaturated lipids. Herein, the antiradical activity of chlorogenic acid (5-CQA) and its corresponding esters with seven fatty alcohols (from methanol to eicosanol) have been achieved using the well-known 2,2-diphenyl-1-picrylhydrazyl (DPPH) method. Hydrophobation was shown to significantly improve the antiradical activity of 5-CQA esters which reached a maximum for butyl- and octyl-chlorogenate. In addition, for both 5-CQA and its esters, it was demonstrated that the global mechanism of DPPH* stabilization proceeded likely by electron transfer (ET), while it appeared that the pathways of DPPH* stabilization were different between 5-CQA and its esters, as confirmed by the LC-MS characterization of reaction products. Finally, strong differences were found between the tested molecules allowing the proposal of different DPPH* stabilization pathways by electron transfer for 5-CQA and its esters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.