Sertoli cells (SCs) possess the unparalleled ability to provide the germ line with growth factors and nutrients. Although SCs can oxidize amino acids, e.g., glutamine, they mostly metabolize glucose, producing high amounts of lactate, the germ cells preferential substrate. Regucalcin (RGN) is a calcium-binding protein that has been indicated as a regulator of cell metabolism. In this study, we investigated glucose and glutamine handling in the SCs of transgenic rats overexpressing RGN (Tg-RGN) comparatively with wild-type (Wt) littermates. Primary SCs isolated from adult Tg-RGN animals and maintained in culture for 24 hours, produced and exported more lactate, despite consuming less glucose. These observations were underpinned by increased expression of alanine transaminase, and augmented glutamine consumption, suggesting that alternative routes are contributing to the enhanced lactate production in the SCs of Tg-RGN rats. Moreover, lactate seems to be used by germ cells, with diminished apoptosis being detected in the seminiferous tubules of Tg-RGN animals cultured ex vivo. The obtained results showed a distinct metabolism in the SCs of Wt and Tg-RGN rats widening the roles assigned to RGN in spermatogenesis. These findings also highlighted the plasticity of SCs metabolism, a feature that would be exploited in the context of male infertility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.