A Kalman filter can be used to fill space–state reconstruction dynamics based on knowledge of a system and partial measurements. However, its performance relies on accurate modeling of the system dynamics and a proper characterization of the uncertainties, which can be hard to obtain in real-life scenarios. In this work, we explore how the values of a Kalman gain matrix can be estimated by using spiking neural networks through a combination of biologically plausible neuron models with spike-time-dependent plasticity learning algorithms. The performance of proposed neural architecture is verified with simulations of some representative nonlinear systems, which show promising results. This approach traces a path for its implementation in neuromorphic analog hardware that can learn and reconstruct partial and changing dynamics of a system without the massive power consumption that is typically needed in a Von Neumann-based computer architecture.
Noise management associated with input signals in sensor devices arises as one of the main problems limiting robot control performance. This article introduces a novel neuromorphic filter model based on a leaky integrate and fire (LIF) neural model cell, which encodes the primary information from a noisy input signal and delivers an output signal with a significant noise reduction in practically real-time with energy-efficient consumption. A new approach for neural decoding based on the neuron-cell spiking frequency is introduced to recover the primary signal information. The simulations conducted on the neuromorphic filter demonstrate an outstanding performance of white noise rejecting while preserving the original noiseless signal with a low information loss. The proposed filter model is compatible with the CMOS technology design methodologies for implementing low consumption smart sensors with applications in various fields such as robotics and the automotive industry demanded by Industry 4.0.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.