The Josephson effect describes the generic appearance of a supercurrent in a weak link between two superconductors. Its exact physical nature deeply influences the properties of the supercurrent. In recent years, considerable efforts have focused on the coupling of superconductors to the surface states of a three-dimensional topological insulator. In such a material, an unconventional induced p-wave superconductivity should occur, with a doublet of topologically protected gapless Andreev bound states, whose energies vary 4π-periodically with the superconducting phase difference across the junction. In this article, we report the observation of an anomalous response to rf irradiation in a Josephson junction made of a HgTe weak link. The response is understood as due to a 4π-periodic contribution to the supercurrent, and its amplitude is compatible with the expected contribution of a gapless Andreev doublet. Our work opens the way to more elaborate experiments to investigate the induced superconductivity in a three-dimensional insulator.
Strained bulk HgTe is a three-dimensional topological insulator, whose surface electrons have a high mobility ( $ 30 000 cm 2 =Vs), while its bulk is effectively free of mobile charge carriers. These properties enable a study of transport through its unconventional surface states without being hindered by a parallel bulk conductance. Here, we show transport experiments on HgTe-based Josephson junctions to investigate the appearance of the predicted Majorana states at the interface between a topological insulator and a superconductor. Interestingly, we observe a dissipationless supercurrent flow through the topological surface states of HgTe. The current-voltage characteristics are hysteretic at temperatures below 1 K, with critical supercurrents of several microamperes. Moreover, we observe a magnetic-field-induced Fraunhofer pattern of the critical supercurrent, indicating a dominant 2-periodic Josephson effect in the unconventional surface states. Our results show that strained bulk HgTe is a promising material system to get a better understanding of the Josephson effect in topological surface states, and to search for the manifestation of zero-energy Majorana states in transport experiments.
We use Superconducting QUantum Interference Device (SQUID) microscopy to characterize the current-phase relation (CPR) of Josephson Junctions from 3-dimentional topological insulator HgTe (3D-HgTe). We find clear skewness in the CPRs of HgTe junctions ranging in length from 200 nm to 600 nm. The skewness indicates that the Josephson current is predominantly carried by Andreev bound states with high transmittance, and the fact that the skewness persists in junctions that are longer than the mean free path suggests that the effect may be related to the helical nature of the Andreev bound states in the surface of HgTe.Topological insulators (TI) have a special band structure with important consequences for proximity-induced superconductivity. In 3-dimentional topological insulators (3D-TI), the inversion of the conduction and valence bands leads to conducting 2D surface states with energies that are linearly proportional to their momenta [1][2][3][4][5]. Spinmomentum locking protects the charge carriers at the surface against elastic backscattering [6,7]. These special properties are reflected in the superconducting proximity effect in an S/3D-TI bilayer or an S/TI/S junction, which may host Majorana fermions in a quasi-1D channel or vortex core [8][9][10]. Most previous works characterized current-voltage characteristics to determine the critical current's dependence on temperature, gate voltage, or magnetic field [11][12][13][14][15][16][17][18][19][20][21][22], while a few studies characterized the CPR [23,24].Here, we use a scanning SQUID microscope to perform contactless measurements of the diamagnetic response of Nb/HgTe bilayers and of the CPR of Nb/HgTe/Nb junctions. In contrast to previous CPR results [23,24], we find no evidence for bulk states, 2 and we observe that the CPRs of many junctions of different sizes consistently exhibit forward skewness.The CPR in an S/TI/S junction is a key diagnostic [8,[25][26][27][28][29][30][31][32]. Weak disorder in the TI far from the superconducting contacts theoretically does not affect the induced superconducting state [33,34]; therefore, Andreev bound states should form in hightransmittance surface channels [8,26,27,29,31]. A CPR with forward skewness -that is, a deviation from a perfect sinusoidal form -is a signature of such high-transmittance Andreev bound states [35][36][37].To our knowledge, there have not been direct observations of forward skewed CPRs in topological insulators [23,24], although the skewness has been indirectly inferred [24] from the Fraunhofer interference pattern. Previous CPR experiments in topological insulators [23,24] were complicated in part by bulk states, self-inductance effects, and bias voltage, factors that are eliminated in this work.Moreover, a skewed CPR can also result from ballistic transport [35]. Measurements in metallic break junctions showed that the CPR approaches the predictions for quantum point contacts in the ballistic limit [38]. In metallic atomic point contacts, the CPR was significantly skewed only in contacts wi...
A strained and undoped HgTe layer is a three-dimensional topological insulator, in which electronic transport occurs dominantly through its surface states. In this Letter, we present transport measurements on HgTe-based Josephson junctions with Nb as a superconductor. Although the Nb-HgTe interfaces have a low transparency, we observe a strong zero-bias anomaly in the differential resistance measurements. This anomaly originates from proximity-induced superconductivity in the HgTe surface states. In the most transparent junction, we observe periodic oscillations of the differential resistance as a function of an applied magnetic field, which correspond to a Fraunhofer-like pattern. This unambiguously shows that a precursor of the Josephson effect occurs in the topological surface states of HgTe.
Abstract. We have experimentally studied the diffusion thermopower of a serial double quantum dot, defined electrostatically in a GaAs/AlGaAs heterostructure. We present the thermopower stability diagram for a temperature difference T = (20 ± 10) mK across the device and find a maximum thermovoltage signal of several µV in the vicinity of the triple points. Along a constant energy axis in this regime, the data show a characteristic pattern which is in agreement with Mott's relation and can be well understood within a model of sequential transport.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.