Bivalves may play a major role in structuring aquatic communities. This may be especially relevant in aquatic communities dominated by non-native invasive bivalves, which can contribute to the increase of habitat homogenization. In this study, we assess how habitat homogenization, through the reduction of empty bivalve shells identities, influences the macroinvertebrate assemblages. Towards this end, a manipulative experiment with the empty shells of two native (Potomida littoralis and Unio delphinus) and one non-native (Corbicula fluminea) species was performed. Seven treatments were prepared, three of them consisting of homogeneous substrates using shells of one species, and four of them consisting in heterogeneous substrates using more than one species. The associated fauna colonizing different treatments was analyzed through taxonomic and trait-based approaches. Our results showed that the substrate complexity influenced the density of macroinvertebrates, with the heterogeneous treatments significantly yielding more dense assemblages. Also, the trait patterns differed among the levels of habitat heterogeneity, influencing mainly organisms that feed on microphytes of both small and big sizes, that inhabit areas with slow to moderate water flow, and that have short and long live cycles. Further, the functional diversity was not influenced by the substrate heterogeneity. Therefore, the habitat homogenization, through the accumulation of non-native C. fluminea empty shells in the river bottom, did not affect the functional diversity of the macroinvertebrate assemblages.
This paper presents an aligned carbon nanotube (CNT)-based strain sensor. Vertical aligned carbon nanotubes (VA-CNT), synthesized by chemical vapour deposition (CVD), were knocked down onto polymeric films, in order to obtain a thin 10 × 10 × 0.05 mm CNT patch. Different polymeric substrates, ADEXepoxy, polyethylene terephthalate (PET) and polyimide (PI) were used. The samples' morphology before and after the knock down process, specifically their alignment, was observed by scanning electron microscopy (SEM). The good quality of the synthesized VA-CNT was assessed by Raman spectroscopy. Furthermore, transmission electron microscopy (TEM) analysis was carried out to determine the average wall number and diameters (inner and outer) of the VA-CNT. A MATLAB software with an adapted Van der Pauw method for anisotropic conductors was developed to determine the electric properties of the obtained samples, which were strained in the transverse (X) and parallel (Y) directions with respect to the CNT alignment. The electric anisotropy, defined as electric resistance ratio between obtained measurements along the X (R xx ) and Y (R yy ) -axes, decreases with deformation increment when the sample was strained in the Y-direction, while it increases when strained in the X-direction. Moreover, the obtained Gauge factor values showed a much sensitive response to deformation, i.e., approximately 47% increase in GF values, when the samples are strained transversely to CNT alignment. These results showed that the piezoresistive CNT/polymeric based sensor produced is suitable for strain sensing applications.
Bivalve shells decay were evaluated.• Decays varied among species, shell size, water flow and season. • The thinnest shells showed the highest decays, and the thickest shells the lowest. • An increase in shells preservation was observed when they were buried. • Decays in lotic habitats were up to 2.13 times higher than in lentic habitats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.