SUMMARY
BackgroundPancreatitis is a potentially severe condition. Patients with inflammatory bowel disease (IBD) seem to be at increased risk for acute pancreatitis.
In this real-life cohort of patients with UC, golimumab therapy was effective for inducing and maintaining clinical response. Although anti-TNF-naive patients had better outcomes, golimumab was also effective in anti-TNF-experienced patients. Only the patients given golimumab after previous failure of 2 anti-TNF agents had significantly worse outcomes. Golimumab dose escalation was beneficial and safe.
Physical and psychological stresses are widely accepted as triggers and / or modifiers of the clinical course of diverse gastrointestinal disorders such as peptic ulcer, irritable bowel syndrome or inflammatory bowel disease. Growing experimental evidence from a variety of models such as immobilization, thermal injury or early maternal deprivation in laboratory animals uniformly supports the ability of stress to induce the development of gastric ulcers, altered gastrointestinal motility and ion secretion, and increased intestinal permeability leading to the passage of antigens to the lamina propria and bacterial translocation. Stress can also synergize with other pathogenic factors such as Helicobacter pylori, non-steroidal anti-inflammatory drugs or colitis-inducing chemicals to produce gastrointestinal disease. The brain-gut axis provides the anatomical basis through emotions and environmental influences modulate the gastrointestinal function through the regulation of gastrointestinal immune system and mucosal inflammation; in this sense, mucosal mast cells - at cellular level - and corticotropin releasing factor (CRF) - at molecular level - seem to play a crucial role. On the other hand, an array of adaptive responses have been evolved in order to maintain the homeostasis and to ensure the survival of the individual. In the gut mucosa anti-inflammatory pathways counteract the deleterious effect of the stressful stimuli on the gastrointestinal homeostasis. In the present review we discuss the several experimental approaches used to mimic human stressful events or chronic stress in laboratory animals, the evidence of stress-induced gastrointestinal inflammation and dysfunction derived from them, and the involved cellular and molecular mechanisms that are being discovered during the last years.
Intestinal epithelial cells (IECs) are a first line of defense against microbial pathogens that enter the host through the intestinal tract. Moreover, viral pathogens that infect the host via the intestinal epithelium are an important cause of morbidity and mortality. However, the mechanisms by which viral pathogens activate antiviral defense mechanisms in IECs are largely unknown. The synthetic dsRNA analog polyinosinic-polycytidylic acid and infection with live virus were used to probe the molecules that are activated and the mechanisms of signaling in virus-infected human IECs. Polyinosinic-polycytidylic acid activated IFN regulatory factor 3 dimerization and phosphorylation, increased activity of the IFN-stimulated response element, induced a significant increase in IFN-β mRNA transcripts and IFN-β secretion, and up-regulated the expression of IFN-regulated genes in IECs. Those responses were dependent upon activation of the dsRNA binding protein retinoic acid inducible gene I (RIG-I) and the RIG-I interacting protein IFN promoter stimulator-1, but not on dsRNA-activated protein kinase or TLR3, which also were expressed by IECs. Virus replication and virus-induced cell death increased in IECs in which RIG-I was silenced, consistent with the importance of the RIG-I signaling pathway in IEC antiviral innate immune defense mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.