Workflow technology has been proven as an enabler for numerous benefits for private and public organizations. Including: cost reduction, efficiency savings in terms of time and cost, increased capability, faster processing, reductions in errors, and work iterations, service quality and customer satisfaction. Public sector has endorsed these benefits by adopting workflow management systems to support administrative processes, such as human resources management or claims processing. This technology is yet to be utilized to support the formulation of policy making processes to facilitate the participation of citizens in the policy making processes and increase their awareness on political issues. This paper Investigates the feasibility of adopting workflow tools for the support of decision making processes that lead to development of public policies, despite the variant institutional settings. To do so, public policy making processes from four countries were examined and analyzed. The results are explored further in the article.
In the last years, the evolution of digital communications has been harnessed by medical applications. In that context, wireless communications are preferable over wired communications, as they facilitate the work of health technicians by reducing cabling on the stretchers. However, the use of wireless communications is challenging, especially when high data rates and low latencies are required. In those scenarios, multiple-input multiple-output (MIMO) techniques might have an important role, thanks to the high capacity gains that they can exhibit, which ideally increase with the MIMO size. In this work, we study the propagation scenario of a typical medical laboratory through ray-tracing techniques. By taking into account the derived channel model, we study the potential of MIMO techniques in an IEEE 802.11ax environment. Through a set of performance results regarding the system capacity, we show that the MIMO gains might not be as high as supposed in the medical laboratory, being far from the ideal scenario. Therefore, the large data rates required by the modern medical imaging applications might only be achieved with a combination of MIMO systems and large bandwidths.
Unmanned Aerial Vehicles (UAVs), although hardly a new technology, have recently gained a prominent role in many industries being widely used not only among enthusiastic consumers, but also in high demanding professional situations, and will have a massive societal impact over the coming years. However, the operation of UAVs is fraught with serious safety risks, such as collisions with dynamic obstacles (birds, other UAVs, or randomly thrown objects). These collision scenarios are complex to analyze in real-time, sometimes being computationally impossible to solve with existing State of the Art (SoA) algorithms, making the use of UAVs an operational hazard and therefore significantly reducing their commercial applicability in urban environments. In this work, a conceptual framework for both stand-alone and swarm (networked) UAVs is introduced, with a focus on the architectural requirements of the collision avoidance subsystem to achieve acceptable levels of safety and reliability. The SoA principles for collision avoidance against stationary objects are reviewed and a novel approach is described, using deep learning techniques to solve the computational intensive problem of real-time collision avoidance with dynamic objects. The proposed framework includes a web-interface allowing the full control of UAVs as remote clients with a supervisor cloud-based platform. The feasibility of the proposed approach was demonstrated through experimental tests using a UAV, developed from scratch using the proposed framework. Test flight results are presented for an autonomous UAV monitored from multiple countries across the world.
Multi-Input, Multi-Output (MIMO) techniques are seeing widespread usage in wireless communication systems due to their large capacity gains. On the other hand, security is a concern of any wireless system, which can make schemes that implement physical layer security key in assuring secure communications. In this paper, we study the physical layer security issues of MIMO with Singular Value Decomposition (SVD) schemes, employed along with Single-Carrier with Frequency-Domain Equalization (SC-FDE) techniques. More concretely. the security potential against an unintended eavesdropper is analysed, and it is shown that the higher the distance between the eavesdropper and the transmitter or receiver, the higher the secrecy rate. In addition, in a scenario where there is Line of Sight (LOS) between all users, it is shown that the secrecy rate can be even higher than in the previous scenario. Therefore, MIMO-SVD schemes combined with SC-FDE can be an efficient option for highly secure MIMO communications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.