The Cleft and Lip Palate (CLP) is a malformation with high recurrence in Colombia, which affects the ability of the phonation system, making difficult the effective communication of the patient. This research seeks to find patterns that enable to detect hypernasality without using invasive diagnostic methods. We performed an analysis of a large range of acoustic features to identify those capable of discriminating hypernasality. The analyzed features include: Teager energy operator (TEO), linear predictive coding (LPC), Mel Frequency Cepstral Coefficients (MFCC), Pitch, Jitter, Shimmer, and the first three formants together with the bandwidth of the first formant. With the correct configuration is achieved discriminant patterns classify 99 percent of patients hypernasal of the database with a false positive rate of less than 1 percent of healthy patients, which are promising results as a starting point for creating a tool for automatic noninvasive detection of hypernasality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.