Early and differential diagnosis of intrahepatic cholangiocarcinoma (iCCA) and hepatocellular carcinoma (HCC) by noninvasive methods represents a current clinical challenge. The analysis of low‐molecular‐weight metabolites by new high‐throughput techniques is a strategy for identifying biomarkers. Here, we have investigated whether serum metabolome can provide useful biomarkers in the diagnosis of iCCA and HCC and could discriminate iCCA from HCC. Because primary sclerosing cholangitis (PSC) is a risk factor for CCA, serum metabolic profiles of PSC and CCA have also been compared. The analysis of the levels of lipids and amino acids in the serum of patients with iCCA, HCC, and PSC and healthy individuals (n = 20/group) showed differential profiles. Several metabolites presented high diagnostic value for iCCA versus control, HCC versus control, and PSC versus control, with areas under the receiver operating characteristic curve (AUC) greater than those found in serum for the nonspecific tumor markers carbohydrate antigen 19‐9 (CA 19‐9) and alpha‐fetoprotein (AFP), commonly used to help in the diagnosis of iCCA and HCC, respectively. The development of an algorithm combining glycine, aspartic acid, SM(42:3), and SM(43:2) permitted to accurately differentiate in the diagnosis of both types of tumors (biopsy‐proven). The proposed model yielded 0.890 AUC, 75% sensitivity, and 90% specificity. Another algorithm by combination of PC(34:3) and histidine accurately permitted to differentiate PSC from iCCA, with an AUC of 0.990, 100% sensitivity, and 70% specificity. These results were validated in independent cohorts of 14‐15 patients per group and compared with profiles found in patients with nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Conclusion: Specific changes in serum concentrations of certain metabolites are useful to differentiate iCCA from HCC or PSC, and could help in the early diagnosis of these diseases.
Our results indicate that histologic tumor grade and preoperative biliary drainage are the only significant independent prognostic factors in PDAC patients after pancreatectomy.
The diagnosis of adenocarcinomas located in the pancreas head, i.e., distal cholangiocarcinoma (dCCA) and pancreatic ductal adenocarcinoma (PDAC), constitutes a clinical challenge because they share many symptoms, are not easily distinguishable using imaging techniques and accurate biomarkers are not available. Searching for biomarkers with potential usefulness in the differential diagnosis of these tumors, we have determined serum metabolomic profiles in healthy controls and patients with dCCA, PDAC or benign pancreatic diseases (BPD). Ultra-high-performance liquid chromatography coupled to mass spectrometry (UHPLC-MS) analysis was performed in serum samples from dCCA (n = 34), PDAC (n = 38), BPD (n = 42) and control (n = 25) individuals, divided into discovery and validation cohorts. This approach permitted 484 metabolites to be determined, mainly lipids and amino acids. The analysis of the results led to the proposal of a logistic regression model able to discriminate patients with dCCA and PDAC (AUC value of 0.888) based on the combination of serum levels of nine metabolites (acylcarnitine AC(16:0), ceramide Cer(d18:1/24:0), phosphatidylcholines PC(20:0/0:0) and PC(O-16:0/20:3), lysophosphatidylcholines PC(20:0/0:0) and PC(0:0/20:0), lysophosphatidylethanolamine PE(P-18:2/0:0), and sphingomyelins SM(d18:2/22:0) and SM(d18:2/23:0)) and CA 19-9. In conclusion, we propose a novel specific panel of serum metabolites that can help in the differential diagnosis of dCCA and PDAC. Further validation of their clinical usefulness in prospective studies is required.
Surgery of the abdominal aorta generates a systemic inflammatory response (SIR), a source of operative morbidity-mortality. In the present work we attempted to evaluate the evolution of SIR in an experimental model that simulates elective and urgent surgery on the abdominal aorta. Fifteen mini-pigs divided into three groups were used. The animals were subjected to suprarenal aortic/iliac clamping and bypass with a Dacron-collagen prosthetic graft. Groups were as follows: (1) sham (only aortic dissection); (2) clamping and bypass; (3) hemorrhage of 40%, pre-clamping, and bypass. Determinations included (1) tumor necrosis factor-alpha (TNF-alpha) interleukin (IL)-1beta, IL-6, IL-10, interferon-gamma; (2) myeloperoxidase (MPO), superoxide anion (SOA), superoxide dismutase (SOD), and malondialdehyde (MDA); (3) nitrites; (4) iNOS, (5) cell adhesion molecules (ICAM-1, VCAM-1) at 24 hours, 48 hours, and on day 7; and (6) NFkappaB at 48 hours. Our results point to an increase in all inflammatory variables, corroborated by their molecular regulators such as the expression of CAMs, iNOS, and NFkappaB. The alterations tended to normalize by day 7, after reperfusion. The results point to the great importance of SIR at all levels (molecular, nuclear, cellular, and systemic) in situations such as elective and urgent abdominal aorta surgery and the role that control of this response could represent for the future of vascular surgery.
Sporadic Colorectal Cancer (sCRC) is the third leading cause of cancer death in the Western world, and the sCRC patients presenting with synchronic metastasis have the poorest prognosis. Genetic alterations accumulated in sCRC tumor cells translate into mutated proteins and/or abnormal protein expression levels, which contribute to the development of sCRC. Then, the tumor-associated proteins (TAAs) might induce the production of auto-antibodies (aAb) via humoral immune response. Here, Nucleic Acid Programmable Protein Arrays (NAPPArray) are employed to identify aAb in plasma samples from a set of 50 sCRC patients compared to seven healthy donors. Our goal was to establish a systematic workflow based on NAPPArray to define differential aAb profiles between healthy individuals and sCRC patients as well as between non-metastatic (n = 38) and metastatic (n = 12) sCRC, in order to gain insight into the role of the humoral immune system in controlling the development and progression of sCRC. Our results showed aAb profile based on 141 TAA including TAAs associated with biological cellular processes altered in genesis and progress of sCRC (e.g., FSCN1, VTI2 and RPS28) that discriminated healthy donors vs. sCRC patients. In addition, the potential capacity of discrimination (between non-metastatic vs. metastatic sCRC) of 7 TAAs (USP5, ML4, MARCKSL1, CKMT1B, HMOX2, VTI2, TP53) have been analyzed individually in an independent cohort of sCRC patients, where two of them (VTI2 and TP53) were validated (AUC ~75%). In turn, these findings provided novel insights into the immunome of sCRC, in combination with transcriptomics profiles and protein antigenicity characterizations, wich might lead to the identification of novel sCRC biomarkers that might be of clinical utility for early diagnosis of the tumor. These results explore the immunomic analysis as potent source for biomarkers with diagnostic and prognostic value in CRC. Additional prospective studies in larger series of patients are required to confirm the clinical utility of these novel sCRC immunomic biomarkers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.