This paper summarizes the recent activities of the Chromosome-Centric Human Proteome Project (C-HPP) consortium, which develops new technologies to identify yet-to-be annotated proteins (termed "missing proteins") in biological samples that lack sufficient experimental evidence at the protein level for confident protein identification. The C-HPP also aims to identify new protein forms that may be caused by genetic variability, post-translational modifications, and alternative splicing. Proteogenomic data integration forms the basis of the C-HPP's activities; therefore, we have summarized some of the key approaches and their roles in the project. We present new analytical technologies that improve the chemical space and lower detection limits coupled to bioinformatics tools and some publicly available resources that can be used to improve data analysis or support the development of analytical assays. Most of this paper's content has been compiled from posters, slides, and discussions presented in the series of C-HPP workshops held during 2014. All data (posters, presentations) used are available at the C-HPP Wiki (http://c-hpp.webhosting.rug.nl/) and in the Supporting Information.
We have made evident the possibility of detecting an inherited paternal mutation in a non-invasive way at the 13t(hr) weeks of pregnancy. This methodology could be very useful in cases of paternally inherited dominant disorders. The technical improvements in fetal DNA detection and analysis might lead to the development of new applications in the non-invasive prenatal diagnosis field.
Osteoarthritis (OA) is the most common rheumatic disease and one of the most disabling pathologies worldwide. To date, the diagnostic methods of OA are very limited, and there are no available medications capable of halting its characteristic cartilage degeneration. Therefore, there is a significant interest in new biomarkers useful for the early diagnosis, prognosis, and therapeutic monitoring. In the recent years, protein microarrays have emerged as a powerful proteomic tool to search for new biomarkers. In this study, we have used two concepts for generating protein arrays, antigen microarrays, and NAPPA (nucleic acid programmable protein arrays), to characterize differential autoantibody profiles in a set of 62 samples from OA, rheumatoid arthritis (RA), and healthy controls. An untargeted screen was performed on 3840 protein fragments spotted on planar antigen arrays, and 373 antigens were selected for validation on bead-based arrays. In the NAPPA approach, a targeted screening was performed on 80 preselected proteins. The autoantibody targeting CHST14 was validated by ELISA in the same set of patients. Altogether, nine and seven disease related autoantibody target candidates were identified, and this work demonstrates a combination of these two array concepts for biomarker discovery and their usefulness for characterizing disease-specific autoantibody profiles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.