The extraordinary ability of space-charge waves in plasmas to accelerate charged particles at gradients that are orders of magnitude greater than in current accelerators has been well documented. We develop a phenomenological framework for laser wakefield acceleration (LWFA) in the 3D nonlinear regime, in which the plasma electrons are expelled by the radiation pressure of a short pulse laser, leading to nearly complete blowout. Our theory provides a recipe for designing a LWFA for given laser and plasma parameters and estimates the number and the energy of the accelerated electrons whether self-injected or externally injected. These formulas apply for self-guided as well as externally guided pulses (e.g. by plasma channels). We demonstrate our results by presenting a sample particle-in-cell (PIC) simulation of a 30 fs, 200 TW laser interacting with a 0.75 cm long plasma with density 1:5 10 18 cm ÿ3 to produce an ultrashort (10 fs) monoenergetic bunch of self-injected electrons at 1.5 GeV with 0.3 nC of charge. For future higher-energy accelerator applications, we propose a parameter space, which is distinct from that described by Gordienko and Pukhov [Phys. Plasmas 12, 043109 (2005)] in that it involves lower plasma densities and wider spot sizes while keeping the intensity relatively constant. We find that this helps increase the output electron beam energy while keeping the efficiency high.
We present the first three-dimensional fully kinetic electromagnetic relativistic particle-in-cell simulations of the collision of two interpenetrating plasma shells. The highly accurate plasma-kinetic "particlein-cell" (with the total of 10 8 particles) parallel code OSIRIS has been used. Our simulations show: (i) the generation of long-lived near-equipartition (electro)magnetic fields, (ii) non-thermal particle acceleration, and (iii) short-scale to long-scale magnetic field evolution, in the collision region. Our results provide new insights into the magnetic field generation and particle acceleration in relativistic and subrelativistic colliding streams of particles, which are present in gamma-ray bursters, supernova remnants, relativistic jets, pulsar winds, etc..
The formation of strong, high Mach number (2-3), electrostatic shocks by laser pulses incident on overdense plasma slabs is observed in one- and two-dimensional particle-in-cell simulations, for a wide range of intensities, pulse durations, target thicknesses, and densities. The shocks propagate undisturbed across the plasma, accelerating the ions (protons). For a dimensionless field strength parameter a(0)=16 (Ilambda(2) approximately 3 x 10(20) W cm(-2) microm(2), where I is the intensity and lambda the wavelength), and target thicknesses of a few microns, the shock is responsible for the highest energy protons. A plateau in the ion spectrum provides a direct signature for shock acceleration.
We investigate the long-time evolution of magnetic fields generated by the two-stream instability at ultra-and sub-relativistic astrophysical collisionless shocks. Based on 3D PIC simulation results, we introduce a 2D toy model of interacting current filaments. Within the framework of this model, we demonstrate that the field correlation scale in the region far downstream the shock grows nearly as the light crossing time, λ(t) ∼ ct, thus making the diffusive field dissipation inefficient. The obtained theoretical scaling is tested using numerical PIC simulations. This result extends our understanding of the structure of collisionless shocks in gamma-ray bursts and other astrophysical objects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.