Two plates of different birefringence material can be combined to obtain an achromatic wave retarder. In this work, we achieve a correction for the overall retardation of the system that extends the relation to any azimuth. Current techniques for the design of achromatic wave retarders do not present a parameter that characterizes its achromatism on a range of wavelengths. Thus, an achromatic degree has been introduced, in order to determine the optimal achromatic design composed with retarder plates for a spectrum of incident light. In particular, we have optimized a quarter retarder using two wave plates for the visible spectrum. Our technique has been compared to previous results, showing significant improvement.
Optical encoders are commonly used for high accuracy position measurement, both linear and angular. In order to determine the position, the optical encoder generates two electrical signals that are combined using the arctangent algorithm. There are a number of situations, optical, mechanical and electronic, that affect these signals and produce an error in the position measurement. In this work, we analyze the error produced in optical encoders when the electrical signals vary from their nominal values. By using a linear expansion, simple expressions for the error estimation are obtained which can be used to improve the design of the optical encoders. In addition, an experimental verification of the theoretical results is performed.
The Talbot effect is analyzed when steel tape gratings are used. These gratings are made on a steel substrate, and, because of the manufacture process, both levels of the grating are rough with different roughness parameters. A theoretical analysis based on Fresnel regime, which considers the statistical properties of roughness, is developed. Analytical formulas that show a decreasing exponential dependence on the intensity in terms of the distance between the grating and the observation plane are obtained, and an experimental verification is also performed.
A simple collimation technique based on measuring the period of one self-image produced by a diffraction grating is 11 proposed. Transversal displacement of the grating is not required, and then automatic single-frame processing can 12 be performed. The self-image is acquired with a CMOS camera, and the period is computed using the from the lens. The transmittance of the grating is tx 69 P n a n expiqnx being n integer numbers, a n are the Ix 3 ; z 2 ∝ I 0
Abstract:A novel integrated optical source capable of emitting faint pulses with different polarization states and with different intensity levels at 100 MHz has been developed. The source relies on a single laser diode followed by four semiconductor optical amplifiers and thin film polarizers, connected through a fiber network. The use of a single laser ensures high level of indistinguishability in time and spectrum of the pulses for the four different polarizations and three different levels of intensity. The applicability of the source is demonstrated in the lab through a free space quantum key distribution experiment which makes use of the decoy state BB84 protocol. We achieved a lower bound secure key rate of the order of 3.64 Mbps and a quantum bit error ratio as low as 1.14 × 10 −2 while the lower bound secure key rate became 187 bps for an equivalent attenuation of 35 dB. To our knowledge, this is the fastest polarization encoded QKD system which has been reported so far. The performance, reduced size, low power consumption and the fact that the components used can be space qualified make the source particularly suitable for secure satellite communication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.