Traffic sign detection systems constitute a key component in trending real-world applications, such as autonomous driving, and driver safety and assistance. This paper analyses the stateof-the-art of several object-detection systems (Faster R-CNN, R-FCN, SSD, and YOLO V2) combined with various feature extractors (Resnet V1 50, Resnet V1 101, Inception V2, Inception Resnet V2, Mobilenet V1, and Darknet-19) previously developed by their corresponding authors. We aim to explore the properties of these object-detection models which are modified and specifically adapted to the traffic sign detection problem domain by means of transfer learning. In particular, various publicly available object-detection models that were pre-trained on the Microsoft COCO dataset are fine-tuned on the German Traffic Sign Detection Benchmark dataset. The evaluation and comparison of these models include key metrics, such as the mean average precision (mAP), memory allocation, running time, number of floating point operations, number of parameters of the model, and the effect of traffic sign image sizes. Our findings show that Faster R-CNN Inception Resnet V2 obtains the best mAP, while R-FCN Resnet 101 strikes the best trade-off between accuracy and execution time. YOLO V2 and SSD Mobilenet merit a special mention, in that the former achieves competitive accuracy results and is the second fastest detector, while the latter, is the fastest and the lightest model in terms of memory consumption, making it an optimal choice for deployment in mobile and embedded devices.
This paper presents a Deep Learning approach for traffic sign recognition systems. Several classification experiments are conducted over publicly available traffic sign datasets from Germany and Belgium using a Deep Neural Network which comprises Convolutional layers and Spatial Transformer Networks. Such trials are built to measure the impact of diverse factors with the end goal of designing a Convolutional Neural Network that can improve the state-of-the-art of traffic sign classification task. First, different adaptive and non-adaptive stochastic gradient descent optimisation algorithms such as SGD, SGD-Nesterov, RMSprop and Adam are evaluated. Subsequently, multiple combinations of Spatial Transformer Networks placed at distinct positions within the main neural network are analysed. The recognition rate of the proposed Convolutional Neural Network reports an accuracy of 99.71% in the German Traffic Sign Recognition Benchmark, outperforming previous state-of-the-art methods and also being more efficient in terms of memory requirements.
An innovative approach to physical activity recognition based on the use of discrete variables obtained from accelerometer sensors is presented. The system first performs a discretization process for each variable, which allows efficient recognition of activities performed by users using as little energy as possible. To this end, an innovative discretization and classification technique is presented based on the χ2 distribution. Furthermore, the entire recognition process is executed on the smartphone, which determines not only the activity performed, but also the frequency at which it is carried out. These techniques and the new classification system presented reduce energy consumption caused by the activity monitoring system. The energy saved increases smartphone usage time to more than 27 h without recharging while maintaining accuracy.
BackgroundIn this paper a new approach is applied to the area of marketing research. The aim of this paper is to recognize how brain activity responds during the visualization of short video advertisements using discrete classification techniques. By means of low cost electroencephalography devices (EEG), the activation level of some brain regions have been studied while the ads are shown to users. We may wonder about how useful is the use of neuroscience knowledge in marketing, or what could provide neuroscience to marketing sector, or why this approach can improve the accuracy and the final user acceptance compared to other works.MethodsBy using discrete techniques over EEG frequency bands of a generated dataset, C4.5, ANN and the new recognition system based on Ameva, a discretization algorithm, is applied to obtain the score given by subjects to each TV ad.ResultsThe proposed technique allows to reach more than 75 % of accuracy, which is an excellent result taking into account the typology of EEG sensors used in this work. Furthermore, the time consumption of the algorithm proposed is reduced up to 30 % compared to other techniques presented in this paper.ConclusionsThis bring about a battery lifetime improvement on the devices where the algorithm is running, extending the experience in the ubiquitous context where the new approach has been tested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.