Understanding the lower limb kinematic, kinetic, and electromyography (EMG) data interrelation in controlled speeds is challenging for fully assessing human locomotion conditions. This paper provides a complete dataset with the above-mentioned raw and processed data simultaneously recorded for sixteen healthy participants walking on a 10 meter-flat surface at seven controlled speeds (1.0, 1.5, 2.0, 2.5, 3.0, 3.5, and 4.0 km/h). The raw data include 3D joint trajectories of 24 retro-reflective markers, ground reaction forces (GRF), force plate moments, center of pressures, and EMG signals from Tibialis Anterior, Gastrocnemius Lateralis, Biceps Femoris, and Vastus Lateralis. The processed data present gait cycle-normalized data including filtered EMG signals and their envelope, 3D GRF, joint angles, and torques. This study details the experimental setup and presents a brief validation of the data quality. The presented dataset may contribute to (i) validate and enhance human biomechanical gait models, and (ii) serve as a reference trajectory for personalized control of robotic assistive devices, aiming an adequate assistance level adjusted to the gait speed and user’s anthropometry.
Powered assistive devices have been playing a major role in gait rehabilitation. This work aims to develop a useroriented assistive strategy with an EMG-based control using a powered knee orthosis (PKO) to provide assistive commands according to the user's motion intention tracked by electromyography (EMG) signals. To achieve this goal, the work first comprised the development of a wired EMG acquisition system, the study and implementation of a knee joint torque estimation method, and the development of a real-time controller, which uses the estimated torque as the reference actuator's torque to provide user-oriented assistance in walking. We used a proportional gain method to estimate the knee torque, which required a calibration procedure, allowing to determine the relation between the EMG signal and the actuator's torque. The EMG-based control was validated with two subjects walking in a treadmill. The EMG-based control performed as expected since it proved to be functional and time-effective when assisting the user's movements in walking at different walking speeds. Findings show that the developed assistive strategy can effectively follow the user's motion intention and has the potential for gait rehabilitation of patients with residual muscular strength.
Powered Assistive Devices (PADs) have been proposed to enable repetitive, user-oriented gait rehabilitation. They may include torque controllers that typically require reference joint torque trajectories to determine the most suitable level of assistance. However, a robust approach able to automatically estimate user-oriented reference joint torque trajectories, namely ankle torque, while considering the effects of varying walking speed, body mass, and height on the gait dynamics, is needed. This study evaluates the accuracy and generalization ability of two Deep Learning (DL) regressors (Long-Short Term Memory and Convolutional Neural Network (CNN)) to generate user-oriented reference ankle torque trajectories by innovatively customizing them according to the walking speed (ranging from 1.0 to 4.0 km/h) and users’ body height and mass (ranging from 1.51 to 1.83 m and 52.0 to 83.7 kg, respectively). Furthermore, this study hypothesizes that DL regressors can estimate joint torque without resourcing electromyography signals. CNN was the most robust algorithm (Normalized Root Mean Square Error: 0.70 ± 0.06; Spearman Correlation: 0.89 ± 0.03; Coefficient of Determination: 0.91 ± 0.03). No statistically significant differences were found in CNN accuracy (p-value > 0.05) whether electromyography signals are included as inputs or not, enabling a less obtrusive and accurate setup for torque estimation.
Understanding how to seamlessly adapt the assistance of lower-limb wearable assistive devices (active orthosis (AOs) and exoskeletons) to human locomotion modes (LMs) is challenging. Several algorithms and sensors have been explored to recognize and predict the users’ LMs. Nevertheless, it is not yet clear which are the most used and effective sensor and classifier configurations in AOs/exoskeletons and how these devices’ control is adapted according to the decoded LMs. To explore these aspects, we performed a systematic review by electronic search in Scopus and Web of Science databases, including published studies from 1 January 2010 to 31 August 2022. Sixteen studies were included and scored with 84.7 ± 8.7% quality. Decoding focused on level-ground walking along with ascent/descent stairs tasks performed by healthy subjects. Time-domain raw data from inertial measurement unit sensors were the most used data. Different classifiers were employed considering the LMs to decode (accuracy above 90% for all tasks). Five studies have adapted the assistance of AOs/exoskeletons attending to the decoded LM, in which only one study predicted the new LM before its occurrence. Future research is encouraged to develop decoding tools considering data from people with lower-limb impairments walking at self-selected speeds while performing daily LMs with AOs/exoskeletons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.