Abstract. Graph automorphism (GA) is a classical problem, in which the objective is to compute the automorphism group of an input graph. In this work we propose four novel techniques to speed up algorithms that solve the GA problem by exploring a search tree. They increase the performance of the algorithm by allowing to reduce the depth of the search tree, and by effectively pruning it. We formally prove that a GA algorithm that uses these techniques correctly computes the automorphism group of the input graph. We also describe how the techniques have been incorporated into the GA algorithm conauto, as conauto-2.03, with at most an additive polynomial increase in its asymptotic time complexity. We have experimentally evaluated the impact of each of the above techniques with several graph families. We have observed that each of the techniques by itself significantly reduces the number of processed nodes of the search tree in some subset of graphs, which justifies the use of each of them. Then, when they are applied together, their effect is combined, leading to reductions in the number of processed nodes in most graphs. This is also reflected in a reduction of the running time, which is substantial in some graph families.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.